Search results for: Learning object
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2630

Search results for: Learning object

1100 AINA: Disney Animation Information as Educational Resources

Authors: Piedad Garrido, Fernando Repulles, Andy Bloor, Julio A. Sanguesa, Jesus Gallardo, Vicente Torres, Jesus Tramullas

Abstract:

With the emergence and development of Information and Communications Technologies (ICTs), Higher Education is experiencing rapid changes, not only in its teaching strategies but also in student’s learning skills. However, we have noticed that students often have difficulty when seeking innovative, useful, and interesting learning resources for their work. This is due to the lack of supervision in the selection of good query tools. This paper presents AINA, an Information Retrieval (IR) computer system aimed at providing motivating and stimulating content to both students and teachers working on different areas and at different educational levels. In particular, our proposal consists of an open virtual resource environment oriented to the vast universe of Disney comics and cartoons. Our test suite includes Disney’s long and shorts films, and we have performed some activities based on the Just In Time Teaching (JiTT) methodology. More specifically, it has been tested by groups of university and secondary school students.

Keywords: Information retrieval, animation, educational resources, JiTT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
1099 Using Ontology Search in the Design of Class Diagram from Business Process Model

Authors: Wararat Rungworawut, Twittie Senivongse

Abstract:

Business process model describes process flow of a business and can be seen as the requirement for developing a software application. This paper discusses a BPM2CD guideline which complements the Model Driven Architecture concept by suggesting how to create a platform-independent software model in the form of a UML class diagram from a business process model. An important step is the identification of UML classes from the business process model. A technique for object-oriented analysis called domain analysis is borrowed and key concepts in the business process model will be discovered and proposed as candidate classes for the class diagram. The paper enhances this step by using ontology search to help identify important classes for the business domain. As ontology is a source of knowledge for a particular domain which itself can link to ontologies of related domains, the search can give a refined set of candidate classes for the resulting class diagram.

Keywords: Business Process Model, Model DrivenArchitecture, Ontology, UML Class Diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
1098 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
1097 Use of Social Networks and Mobile Technologies in Education

Authors: Václav Maněna, Roman Dostál, Štěpán Hubálovský

Abstract:

Social networks play an important role in the lives of children and young people. Along with the high penetration of mobile technologies such as smartphones and tablets among the younger generation, there is an increasing use of social networks already in elementary school. The paper presents the results of research, which was realized at schools in the Hradec Králové region. In this research, the authors focused on issues related to communications on social networks for children, teenagers and young people in the Czech Republic. This research was conducted at selected elementary, secondary and high schools using anonymous questionnaires. The results are evaluated and compared with the results of the research, which has been realized in 2008. The authors focused on the possibilities of using social networks in education. The paper presents the possibility of using the most popular social networks in education, with emphasis on increasing motivation for learning. The paper presents comparative analysis of social networks, with regard to the possibility of using in education as well.

Keywords: Social networks, motivation, e-learning, mobile technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
1096 DRE - A Quality Metric for Component based Software Products

Authors: K. S. Jasmine, R. Vasantha

Abstract:

The overriding goal of software engineering is to provide a high quality system, application or a product. To achieve this goal, software engineers must apply effective methods coupled with modern tools within the context of a mature software process [2]. In addition, it is also must to assure that high quality is realized. Although many quality measures can be collected at the project levels, the important measures are errors and defects. Deriving a quality measure for reusable components has proven to be challenging task now a days. The results obtained from the study are based on the empirical evidence of reuse practices, as emerged from the analysis of industrial projects. Both large and small companies, working in a variety of business domains, and using object-oriented and procedural development approaches contributed towards this study. This paper proposes a quality metric that provides benefit at both project and process level, namely defect removal efficiency (DRE).

Keywords: Software Reuse, Defect density, Reuse metrics, Defect Removal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2808
1095 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification

Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman

Abstract:

In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.

Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
1094 Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China

Authors: Dai Zhimei, Hua Chen

Abstract:

The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.

Keywords: Space Syntax, spatial texture, urban space, Yangzhou.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
1093 A General Framework for Modeling Replicated Real-Time Database

Authors: Hala Abdel hameed, Hazem M. El-Bakry, Torky Sultan

Abstract:

There are many issues that affect modeling and designing real-time databases. One of those issues is maintaining consistency between the actual state of the real-time object of the external environment and its images as reflected by all its replicas distributed over multiple nodes. The need to improve the scalability is another important issue. In this paper, we present a general framework to design a replicated real-time database for small to medium scale systems and maintain all timing constrains. In order to extend the idea for modeling a large scale database, we present a general outline that consider improving the scalability by using an existing static segmentation algorithm applied on the whole database, with the intent to lower the degree of replication, enables segments to have individual degrees of replication with the purpose of avoiding excessive resource usage, which all together contribute in solving the scalability problem for DRTDBS.

Keywords: Database modeling, Distributed database, Real time databases, Replication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
1092 Attacks Classification in Adaptive Intrusion Detection using Decision Tree

Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.

Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3631
1091 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537
1090 Education in Technology for Sustainable Development Applied to School Gardens

Authors: Sara Blanc, José V. Benlloch-Dualde, Laura Grindei, Ana C. Torres, Angélica Monteiro

Abstract:

This paper presents a study that leads an experience by introducing digital learning applied to a case study focused on primary and secondary school garden-based education. The approach represents an example for interaction among different education and research agents at different countries and levels, such as universities, public and private researches and schools, to get involved in the implementation of education for sustainable development that will make students become more sensible to natural environment, more responsible for their consumption, more aware about waste reduction and recycling, more conscious of the sustainable use of natural resources and, at the same time, more ‘digitally competent’. The experience was designed attending to the European digital education context and OECD (Organization for Economic Co-operation and Development) directives in transversal skills education. The paper presents the methodology carried out in the study as well as outcomes obtained from the experience.

Keywords: School gardens, primary education, secondary education, science technology and innovation in education, digital learning, sustainable development goals, university, knowledge transference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
1089 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.

Keywords: Politics, personality traits, LIWC, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1088 Shot Boundary Detection Using Octagon Square Search Pattern

Authors: J. Kavitha, S. Sowmyayani, P. Arockia Jansi Rani

Abstract:

In this paper, a shot boundary detection method is presented using octagon square search pattern. The color, edge, motion and texture features of each frame are extracted and used in shot boundary detection. The motion feature is extracted using octagon square search pattern. Then, the transition detection method is capable of detecting the shot or non-shot boundaries in the video using the feature weight values. Experimental results are evaluated in TRECVID video test set containing various types of shot transition with lighting effects, object and camera movement within the shots. Further, this paper compares the experimental results of the proposed method with existing methods. It shows that the proposed method outperforms the state-of-art methods for shot boundary detection.

Keywords: Content-based indexing and retrieval, cut transition detection, discrete wavelet transform, shot boundary detection, video source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
1087 ‘Saying’ the Nuclear Power in France: Evolution of the Images and Perceptions of a Sensitive Theme

Authors: Jandot Aurélia

Abstract:

As the nuclear power is a sensitive field leading to controversy, the quality of the communication about it is important. Between 1965 and 1981, in France, this one had gradually changed. This change is studied here in the main French news magazine L’Express, in connection with several parameters. As this represents a huge number of copies and occurrences, thus a considerable amount of information; this paper is focused on the main articles as well as the main “mental images”. These ones are important, as their aim is to direct the thought of the readers, and as they have led the public awareness to evolve. Over this 17 years, two trends are in confrontation: The first one is promoting the perception of the nuclear power, while the second one is discrediting it. These trends are organized in two axes: the evolution of engineering, and the risks. In both cases, the changes in the language allow discerning the deepest intentions of the magazine editing, over a period when the nuclear technology, to there a laboratory object accompanied with mystery and secret, has become a social issue seemingly open to all.

Keywords: French news magazine, mental images, nuclear power, public awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
1086 An Algebra for Protein Structure Data

Authors: Yanchao Wang, Rajshekhar Sunderraman

Abstract:

This paper presents an algebraic approach to optimize queries in domain-specific database management system for protein structure data. The approach involves the introduction of several protein structure specific algebraic operators to query the complex data stored in an object-oriented database system. The Protein Algebra provides an extensible set of high-level Genomic Data Types and Protein Data Types along with a comprehensive collection of appropriate genomic and protein functions. The paper also presents a query translator that converts high-level query specifications in algebra into low-level query specifications in Protein-QL, a query language designed to query protein structure data. The query transformation process uses a Protein Ontology that serves the purpose of a dictionary.

Keywords: Domain-Specific Data Management, Protein Algebra, Protein Ontology, Protein Structure Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
1085 Managing an Acute Pain Unit Based on the Balanced Scorecard

Authors: Helena Costa Oliveira, Carmem Oliveira, Rita Moutinho

Abstract:

The Balanced Scorecard (BSC) is a continuous strategic monitoring model focused not only on financial issues but also on internal processes, patients/users, and learning and growth. Initially dedicated to business management, it currently serves organizations of other natures - such as hospitals. This paper presents a BSC designed for a Portuguese Acute Pain Unit (APU). This study is qualitative and based on the experience of collaborators at the APU. The management of APU is based on four perspectives – users, internal processes, learning and growth, and financial and legal. For each perspective, there were identified strategic objectives, critical factors, lead indicators and initiatives. The strategic map of the APU outlining sustained strategic relations among strategic objectives. This study contributes to the development of research in the health management area as it explores how organizational insufficiencies and inconsistencies in this particular case can be addressed, through the identification of critical factors, to clearly establish core outcomes and initiatives to set up.

Keywords: Acute pain unit, balanced scorecard, hospital management, organizational performance, Portugal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
1084 Elaboration and Validation of a Survey about Research on the Characteristics of Mentoring of University Professors’ Lifelong Learning

Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile

Abstract:

This paper outlines the design and development of the MENDEPRO questionnaire, designed to analyze mentoring performance within a professional development process carried out with professors at the University of the Basque Country, Spain. The study took into account the international research carried out over the past two decades into teachers' professional development, and was also based on a thorough review of the most common instruments used to identify and analyze mentoring styles, many of which fail to provide sufficient psychometric guarantees. The present study aimed to gather empirical data in order to verify the metric quality of the questionnaire developed. To this end, the process followed to validate the theoretical construct was as follows: The formulation of the items and indicators in accordance with the study variables; the analysis of the validity and reliability of the initial questionnaire; the review of the second version of the questionnaire and the definitive measurement instrument. Content was validated through the formal agreement and consensus of 12 university professor training experts. A reduced sample of professors who had participated in a lifelong learning program was then selected for a trial evaluation of the instrument developed. After the trial, 18 items were removed from the initial questionnaire. The final version of the instrument, comprising 33 items, was then administered to a sample group of 99 participants. The results revealed a five-dimensional structure matching theoretical expectations. Also, the reliability data for both the instrument as a whole (.98) and its various dimensions (between .91 and .97) were very high. The questionnaire was thus found to have satisfactory psychometric properties and can therefore be considered apt for studying the performance of mentoring in both induction programs for young professors and lifelong learning programs for senior faculty members.

Keywords: Higher education, mentoring, professional development, university teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
1083 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead

Abstract:

Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.

Keywords: Classification, falls, health risk factors, machine learning, older adults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
1082 SEM Image Classification Using CNN Architectures

Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198
1081 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248
1080 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
1079 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis

Abstract:

Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.

Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
1078 Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing

Authors: Dawei Cai

Abstract:

This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden.

Keywords: Wearable device, MEMS sensor, NFC, ubiquitous computing, guide system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
1077 A Collaborative Platform for Multilingual Ontology Development

Authors: Ahmed Tawfik, Fausto Giunchiglia, Vincenzo Maltese

Abstract:

Ontologies provide a common understanding of a specific domain of interest that can be communicated between people and used as background knowledge for automated reasoning in a wide range of applications. In this paper, we address the design of multilingual ontologies following well-defined knowledge engineering methodologies with the support of novel collaborative development approaches. In particular, we present a collaborative platform which allows ontologies to be developed incrementally in multiple languages. This is made possible via an appropriate mapping between language independent concepts and one lexicalization per language (or a lexical gap in case such lexicalization does not exist). The collaborative platform has been designed to support the development of the Universal Knowledge Core, a multilingual ontology currently in English, Italian, Chinese, Mongolian, Hindi and Bangladeshi. Its design follows a workflow-based development methodology that models resources as a set of collaborative objects and assigns customizable workflows to build and maintain each collaborative object in a community driven manner, with extensive support of modern web 2.0 social and collaborative features.

Keywords: Knowledge Diversity, Knowledge Representation, Ontology Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
1076 Bi-Directional Evolutionary Topology Optimization Based on Critical Fatigue Constraint

Authors: Khodamorad Nabaki, Jianhu Shen, Xiaodong Huang

Abstract:

This paper develops a method for considering the critical fatigue stress as a constraint in the Bi-directional Evolutionary Structural Optimization (BESO) method. Our aim is to reach an optimal design in which high cycle fatigue failure does not occur for a specific life time. The critical fatigue stress is calculated based on modified Goodman criteria and used as a stress constraint in our topology optimization problem. Since fatigue generally does not occur for compressive stresses, we use the p-norm approach of the stress measurement that considers the highest tensile principal stress in each point as stress measure to calculate the sensitivity numbers. The BESO method has been extended to minimize volume an object subjected to the critical fatigue stress constraint. The optimization results are compared with the results from the compliance minimization problem which shows clearly the merits of our newly developed approach.

Keywords: Topology optimization, BESO method, p-norm, fatigue constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
1075 Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Authors: T. Niknam, M. Nayeripour, B.Bahmani Firouzi

Abstract:

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Keywords: Ant Colony Optimization (ACO), Data clustering, Hybrid evolutionary optimization algorithm, K-means clustering, Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1074 Automating the Testing of Object Behaviour: A Statechart-Driven Approach

Authors: Dong He Nam, Eric C. Mousset, David C. Levy

Abstract:

The evolution of current modeling specifications gives rise to the problem of generating automated test cases from a variety of application tools. Past endeavours on behavioural testing of UML statecharts have not systematically leveraged the potential of existing graph theory for testing of objects. Therefore there exists a need for a simple, tool-independent, and effective method for automatic test generation. An architecture, codenamed ACUTE-J (Automated stateChart Unit Testing Engine for Java), for automating the unit test generation process is presented. A sequential approach for converting UML statechart diagrams to JUnit test classes is described, with the application of existing graph theory. Research byproducts such as a universal XML Schema and API for statechart-driven testing are also proposed. The result from a Java implementation of ACUTE-J is discussed in brief. The Chinese Postman algorithm is utilised as an illustration for a run-through of the ACUTE-J architecture.

Keywords: Automated testing, model based testing, statechart testing, UML, unit testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
1073 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.

Keywords: Authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
1072 The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment

Authors: Zhao Jing, Bai Yongqing, Shi Qiaofang, Zang Yang, Zhang Huaihao

Abstract:

Advances in software technology enable the computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes.

Keywords: Upper-division undergraduate, computer-based learning, laboratory instruction, amides, molecular modeling, spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367
1071 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions

Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*

Abstract:

Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893