Search results for: fire detection
1529 Detection of Moving Images Using Neural Network
Authors: P. Latha, L. Ganesan, N. Ramaraj, P. V. Hari Venkatesh
Abstract:
Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.
Keywords: Frame separation, Correlation Network, Neural network training, Radial Basis Function, object tracking, Motion Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31491528 Puff Noise Detection and Cancellation for Robust Speech Recognition
Authors: Sangjun Park, Jungpyo Hong, Byung-Ok Kang, Yun-keun Lee, Minsoo Hahn
Abstract:
In this paper, an algorithm for detecting and attenuating puff noises frequently generated under the mobile environment is proposed. As a baseline system, puff detection system is designed based on Gaussian Mixture Model (GMM), and 39th Mel Frequency Cepstral Coefficient (MFCC) is extracted as feature parameters. To improve the detection performance, effective acoustic features for puff detection are proposed. In addition, detected puff intervals are attenuated by high-pass filtering. The speech recognition rate was measured for evaluation and confusion matrix and ROC curve are used to confirm the validity of the proposed system.Keywords: Gaussian mixture model, puff detection and cancellation, speech enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22331527 Structural Damage Detection Using Sensors Optimally Located
Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero
Abstract:
The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore, when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures.
Keywords: Optimum sensor placement, structural damage detection, modal identification, beam-like structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22911526 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.
Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14221525 Vehicle Detection Method using Haar-like Feature on Real Time System
Authors: Sungji Han, Youngjoon Han, Hernsoo Hahn
Abstract:
This paper presents a robust vehicle detection approach using Haar-like feature. It is possible to get a strong edge feature from this Haar-like feature. Therefore it is very effective to remove the shadow of a vehicle on the road. And we can detect the boundary of vehicles accurately. In the paper, the vehicle detection algorithm can be divided into two main steps. One is hypothesis generation, and the other is hypothesis verification. In the first step, it determines vehicle candidates using features such as a shadow, intensity, and vertical edge. And in the second step, it determines whether the candidate is a vehicle or not by using the symmetry of vehicle edge features. In this research, we can get the detection rate over 15 frames per second on our embedded system.
Keywords: vehicle detection, haar-like feauture, single camera, real time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33341524 An Edit-Distance Algorithm to Detect Correlated Attacks in Distributed Systems
Authors: Sule Simsek
Abstract:
Intrusion detection systems (IDS)are crucial components of the security mechanisms of today-s computer systems. Existing research on intrusion detection has focused on sequential intrusions. However, intrusions can also be formed by concurrent interactions of multiple processes. Some of the intrusions caused by these interactions cannot be detected using sequential intrusion detection methods. Therefore, there is a need for a mechanism that views the distributed system as a whole. L-BIDS (Lattice-Based Intrusion Detection System) is proposed to address this problem. In the L-BIDS framework, a library of intrusions and distributed traces are represented as lattices. Then these lattices are compared in order to detect intrusions in the distributed traces.Keywords: Attack graph, distributed, edit-distance, misuse detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13881523 A Moving Human-Object Detection for Video Access Monitoring
Authors: Won-Ho Kim, Nuwan Sanjeewa Rajasooriya
Abstract:
In this paper, a simple moving human detection method is proposed for video surveillance system or access monitoring system. The frame difference and noise threshold are used for initial detection of a moving human-object, and simple labeling method is applied for final human-object segmentation. The simulated results show that the applied algorithm is fast to detect the moving human-objects by performing 95% of correct detection rate. The proposed algorithm has confirmed that can be used as an intelligent video access monitoring system.
Keywords: Moving human-object detection, Video access monitoring, Image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25071522 Detecting Defects in Textile Fabrics with Optimal Gabor Filters
Abstract:
This paper investigates the problem of automated defect detection for textile fabrics and proposes a new optimal filter design method to solve this problem. Gabor Wavelet Network (GWN) is chosen as the major technique to extract the texture features from textile fabrics. Based on the features extracted, an optimal Gabor filter can be designed. In view of this optimal filter, a new semi-supervised defect detection scheme is proposed, which consists of one real-valued Gabor filter and one smoothing filter. The performance of the scheme is evaluated by using an offline test database with 78 homogeneous textile images. The test results exhibit accurate defect detection with low false alarm, thus showing the effectiveness and robustness of the proposed scheme. To evaluate the detection scheme comprehensively, a prototyped detection system is developed to conduct a real time test. The experiment results obtained confirm the efficiency and effectiveness of the proposed detection scheme.Keywords: Defect detection, Filtering, Gabor function, Gaborwavelet networks, Textile fabrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23561521 Hybrid Intelligent Intrusion Detection System
Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed
Abstract:
Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21311520 A Survey on Facial Feature Points Detection Techniques and Approaches
Authors: Rachid Ahdid, Khaddouj Taifi, Said Safi, Bouzid Manaut
Abstract:
Automatic detection of facial feature points plays an important role in applications such as facial feature tracking, human-machine interaction and face recognition. The majority of facial feature points detection methods using two-dimensional or three-dimensional data are covered in existing survey papers. In this article chosen approaches to the facial features detection have been gathered and described. This overview focuses on the class of researches exploiting facial feature points detection to represent facial surface for two-dimensional or three-dimensional face. In the conclusion, we discusses advantages and disadvantages of the presented algorithms.Keywords: Facial feature points, face recognition, facial feature tracking, two-dimensional data, three-dimensional data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16811519 Feature Point Detection by Combining Advantages of Intensity-based Approach and Edge-based Approach
Authors: Sungho Kim, Chaehoon Park, Yukyung Choi, Soon Kwon, In So Kweon
Abstract:
In this paper, a novel corner detection method is presented to stably extract geometrically important corners. Intensity-based corner detectors such as the Harris corner can detect corners in noisy environments but has inaccurate corner position and misses the corners of obtuse angles. Edge-based corner detectors such as Curvature Scale Space can detect structural corners but show unstable corner detection due to incomplete edge detection in noisy environments. The proposed image-based direct curvature estimation can overcome limitations in both inaccurate structural corner detection of the Harris corner detector (intensity-based) and the unstable corner detection of Curvature Scale Space caused by incomplete edge detection. Various experimental results validate the robustness of the proposed method.Keywords: Feature, intensity, contour, hybrid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18311518 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters
Authors: S. Ghasemi, K. Khorasani
Abstract:
In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.
Keywords: Formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19481517 Improved C-Fuzzy Decision Tree for Intrusion Detection
Authors: Krishnamoorthi Makkithaya, N. V. Subba Reddy, U. Dinesh Acharya
Abstract:
As the number of networked computers grows, intrusion detection is an essential component in keeping networks secure. Various approaches for intrusion detection are currently being in use with each one has its own merits and demerits. This paper presents our work to test and improve the performance of a new class of decision tree c-fuzzy decision tree to detect intrusion. The work also includes identifying best candidate feature sub set to build the efficient c-fuzzy decision tree based Intrusion Detection System (IDS). We investigated the usefulness of c-fuzzy decision tree for developing IDS with a data partition based on horizontal fragmentation. Empirical results indicate the usefulness of our approach in developing the efficient IDS.Keywords: Data mining, Decision tree, Feature selection, Fuzzyc- means clustering, Intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761516 Map UI Design of IoT Application Based on Passenger Evacuation Behaviors in Underground Station
Authors: Meng-Cong Zheng
Abstract:
When the public space is in an emergency, how to quickly establish spatial cognition and emergency shelter in the closed underground space is the urgent task. This study takes Taipei Station as the research base and aims to apply the use of Internet of things (IoT) application for underground evacuation mobility design. The first experiment identified passengers' evacuation behaviors and spatial cognition in underground spaces by wayfinding tasks and thinking aloud, then defined the design conditions of User Interface (UI) and proposed the UI design. The second experiment evaluated the UI design based on passengers' evacuation behaviors by wayfinding tasks and think aloud again as same as the first experiment. The first experiment found that the design conditions that the subjects were most concerned about were "map" and hoping to learn the relative position of themselves with other landmarks by the map and watch the overall route. "Position" needs to be accurately labeled to determine the location in underground space. Each step of the escape instructions should be presented clearly in "navigation bar." The "message bar" should be informed of the next or final target exit. In the second experiment with the UI design, we found that the "spatial map" distinguishing between walking and non-walking areas with shades of color is useful. The addition of 2.5D maps of the UI design increased the user's perception of space. Amending the color of the corner diagram in the "escape route" also reduces the confusion between the symbol and other diagrams. The larger volume of toilets and elevators can be a judgment of users' relative location in "Hardware facilities." Fire extinguisher icon should be highlighted. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. "Fire point tips" of the UI design indicated fire with a graphical fireball can convey precise information to the escaped person. However, "Compass and return to present location" are less used in underground space.
Keywords: Evacuation behaviors, IoT application, map UI design, underground station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7411515 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.
Keywords: Color space, neural network, random forest, skin detection, statistical feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19531514 Satellite Beam Handoff Detection Algorithm Based On RCST Mobility Information
Authors: Ji Nyong Jang, Min Woo Lee, Eun Kyung Kim, Ki Keun Kim, Jae Sung Lim
Abstract:
Since DVB-RCS has been successively implemented, the mobile communication on the multi-beam satellite communication is attractive attention. And the DVB-RCS standard sets up to support mobility of a RCST. In the case of the spot-beam satellite system, the received signal strength does not differ largely between the center and the boundary of the beam. Thus, the RSS based handoff detection algorithm is not benefit to the satellite system as a terrestrial system. Therefore we propose an Adaptive handoff detection algorithm based on RCST mobility information. Our handoff detection algorithm not only can be used as centralized handoff detection algorithm but also removes uncertainties of handoff due to the variation of RSS. Performances were compared with RSS based handoff algorithm. Simulation results show that the proposed handoff detection algorithm not only achieved better handoff and link degradation rate, but also achieved better forward link spectral efficiency.
Keywords: DVB-RCS, satellite multi-beam handoff, mobility information, handover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17121513 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine
Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang
Abstract:
An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.
Keywords: Image texture analysis, feature extraction, target detection, pattern classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801512 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN
Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu
Abstract:
Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.Keywords: DDoS detection, EMD, relative entropy, SDN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7661511 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).
Keywords: Intrusion Detection, Supervised Learning, Traffic Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20341510 The Threats of Deforestation, Forest Fire, and CO2 Emission toward Giam Siak Kecil Bukit Batu Biosphere Reserve in Riau, Indonesia
Authors: S. B. Rushayati, R. Meilani, R. Hermawan
Abstract:
A biosphere reserve is developed to create harmony amongst economic development, community development, and environmental protection, through partnership between human and nature. Giam Siak Kecil Bukit Batu Biosphere Reserve (GSKBB BR) in Riau Province, Indonesia, is unique in that it has peat soil dominating the area, many springs essential for human livelihood, high biodiversity. Furthermore, it is the only biosphere reserve covering privately managed production forest areas. In this research, we aimed at analyzing the threat of deforestation and forest fire, and the potential of CO2 emission at GSKBB BR. We used Landsat image, arcView software, and ERDAS IMAGINE 8.5 Software to conduct spatial analysis of land cover and land use changes, calculated CO2 emission based on emission potential from each land cover and land use type, and exercised simple linear regression to demonstrate the relation between CO2 emission potential and deforestation. The result showed that, beside in the buffer zone and transition area, deforestation also occurred in the core area. Spatial analysis of land cover and land use changes from years 2010, 2012, and 2014 revealed that there were changes of land cover and land use from natural forest and industrial plantation forest to other land use types, such as garden, mixed garden, settlement, paddy fields, burnt areas, and dry agricultural land. Deforestation in core area, particularly at the Giam Siak Kecil Wildlife Reserve and Bukit Batu Wildlife Reserve, occurred in the form of changes from natural forest in to garden, mixed garden, shrubs, swamp shrubs, dry agricultural land, open area, and burnt area. In the buffer zone and transition area, changes also happened, what once swamp forest changed into garden, mixed garden, open area, shrubs, swamp shrubs, and dry agricultural land. Spatial analysis on land cover and land use changes indicated that deforestation rate in the biosphere reserve from 2010 to 2014 had reached 16 119 ha/year. Beside deforestation, threat toward the biosphere reserve area also came from forest fire. The occurrence of forest fire in 2014 had burned 101 723 ha of the area, in which 9 355 ha of core area, and 92 368 ha of buffer zone and transition area. Deforestation and forest fire had increased CO2 emission as much as 24 903 855 ton/year.Keywords: Biosphere reserve, CO2 emission, deforestation, forest fire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21451509 Attacks Classification in Adaptive Intrusion Detection using Decision Tree
Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36291508 Behavioral Signature Generation using Shadow Honeypot
Authors: Maros Barabas, Michal Drozd, Petr Hanacek
Abstract:
A novel behavioral detection framework is proposed to detect zero day buffer overflow vulnerabilities (based on network behavioral signatures) using zero-day exploits, instead of the signature-based or anomaly-based detection solutions currently available for IDPS techniques. At first we present the detection model that uses shadow honeypot. Our system is used for the online processing of network attacks and generating a behavior detection profile. The detection profile represents the dataset of 112 types of metrics describing the exact behavior of malware in the network. In this paper we present the examples of generating behavioral signatures for two attacks – a buffer overflow exploit on FTP server and well known Conficker worm. We demonstrated the visualization of important aspects by showing the differences between valid behavior and the attacks. Based on these metrics we can detect attacks with a very high probability of success, the process of detection is however very expensive.Keywords: behavioral signatures, metrics, network, security design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20531507 Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm
Authors: A. A. Khan, M. Naeem, S. Bashir, S. I. Shah
Abstract:
In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.Keywords: Multi Antenna (MA), Multi-input Multi-output(MIMO), Particle Swarm Optimization (PSO), ML detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15051506 Svision: Visual Identification of Scanning and Denial of Service Attacks
Authors: Iosif-Viorel Onut, Bin Zhu, Ali A. Ghorbani
Abstract:
We propose a novel graphical technique (SVision) for intrusion detection, which pictures the network as a community of hosts independently roaming in a 3D space defined by the set of services that they use. The aim of SVision is to graphically cluster the hosts into normal and abnormal ones, highlighting only the ones that are considered as a threat to the network. Our experimental results using DARPA 1999 and 2000 intrusion detection and evaluation datasets show the proposed technique as a good candidate for the detection of various threats of the network such as vertical and horizontal scanning, Denial of Service (DoS), and Distributed DoS (DDoS) attacks.Keywords: Anomaly Visualization, Network Security, Intrusion Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17111505 A Study on Flammability of Bio Oil Combustible Vapour Mixtures
Authors: Mohanad El-Harbawi, Nurul Amirah Hanim Bt. Umar, Norizan Ali, Yoshimitsu Uemura
Abstract:
Study of fire and explosion is very important mainly in oil and gas industries due to several accidents which have been reported in the past and present. In this work, we have investigated the flammability of bio oil vapour mixtures. This mixture may contribute to fire during the storage and transportation process. Bio oil sample derived from Palm Kernell shell was analysed using Gas Chromatography Mass Spectrometry (GC-MS) to examine the composition of the sample. Mole fractions of 12 selected components in the liquid phase were obtained from the GC-FID data and used to calculate mole fractions of components in the gas phase via modified Raoult-s law. Lower Flammability Limits (LFLs) and Upper Flammability Limits (UFLs) for individual components were obtained from published literature. However, stoichiometric concentration method was used to calculate the flammability limits of some components which their flammability limit values are not available in the literature. The LFL and UFL values for the mixture were calculated using the Le Chatelier equation. The LFLmix and UFLmix values were used to construct a flammability diagram and subsequently used to determine the flammability of the mixture. The findings of this study can be used to propose suitable inherently safer method to prevent the flammable mixture from occurring and to minimizing the loss of properties, business, and life due to fire accidents in bio oil productions.Keywords: Gas chromatography, compositions, lower and upper flammability limits (LFL & UFL), flammability diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34301504 Robust Detection of R-Wave Using Wavelet Technique
Authors: Awadhesh Pachauri, Manabendra Bhuyan
Abstract:
Electrocardiogram (ECG) is considered to be the backbone of cardiology. ECG is composed of P, QRS & T waves and information related to cardiac diseases can be extracted from the intervals and amplitudes of these waves. The first step in extracting ECG features starts from the accurate detection of R peaks in the QRS complex. We have developed a robust R wave detector using wavelets. The wavelets used for detection are Daubechies and Symmetric. The method does not require any preprocessing therefore, only needs the ECG correct recordings while implementing the detection. The database has been collected from MIT-BIH arrhythmia database and the signals from Lead-II have been analyzed. MatLab 7.0 has been used to develop the algorithm. The ECG signal under test has been decomposed to the required level using the selected wavelet and the selection of detail coefficient d4 has been done based on energy, frequency and cross-correlation analysis of decomposition structure of ECG signal. The robustness of the method is apparent from the obtained results.Keywords: ECG, P-QRS-T waves, Wavelet Transform, Hard Thresholding, R-wave Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24741503 Efficient and Effective Gabor Feature Representation for Face Detection
Authors: Yasuomi D. Sato, Yasutaka Kuriya
Abstract:
We here propose improved version of elastic graph matching (EGM) as a face detector, called the multi-scale EGM (MS-EGM). In this improvement, Gabor wavelet-based pyramid reduces computational complexity for the feature representation often used in the conventional EGM, but preserving a critical amount of information about an image. The MS-EGM gives us higher detection performance than Viola-Jones object detection algorithm of the AdaBoost Haar-like feature cascade. We also show rapid detection speeds of the MS-EGM, comparable to the Viola-Jones method. We find fruitful benefits in the MS-EGM, in terms of topological feature representation for a face.
Keywords: Face detection, Gabor wavelet based pyramid, elastic graph matching, topological preservation, redundancy of computational complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741502 Lane Detection Using Labeling Based RANSAC Algorithm
Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung
Abstract:
In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.
Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12031501 Aerial Firefighting Aircraft Selection with Standard Fuzzy Sets using Multiple Criteria Group Decision Making Analysis
Authors: C. Ardil
Abstract:
Aircraft selection decisions can be challenging due to their multidimensional and interdisciplinary nature. They involve multiple stakeholders with conflicting objectives and numerous alternative options with uncertain outcomes. This study focuses on the analysis of aerial firefighting aircraft that can be chosen for the Air Fire Service to extinguish forest fires. To make such a selection, the characteristics of the fire zones must be considered, and the capability to manage the logistics involved in such operations, as well as the purchase and maintenance of the aircraft, must be determined. The selection of firefighting aircraft is particularly complex because they have longer fleet lives and require more demanding operation and maintenance than scheduled passenger air service. This paper aims to use the fuzzy proximity measure method to select the most appropriate aerial firefighting aircraft based on decision criteria using multiple attribute decision making analysis. Following fuzzy decision analysis, the most suitable aerial firefighting aircraft is ranked and determined for the Air Fire Service.
Keywords: Aerial firefighting aircraft selection, multiple criteria decision making, fuzzy sets, standard fuzzy sets, determinate fuzzy sets, indeterminate fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, MCDM, PMM, PMM-F
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3991500 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955