Search results for: Similarity Measure.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1367

Search results for: Similarity Measure.

1247 Unified Fusion Approach with Application to SLAM

Authors: Xinde Li, Xinhan Huang, Min Wang

Abstract:

In this paper, we propose the pre-processor based on the Evidence Supporting Measure of Similarity (ESMS) filter and also propose the unified fusion approach (UFA) based on the general fusion machine coupled with ESMS filter, which improve the correctness and precision of information fusion in any fields of application. Here we mainly apply the new approach to Simultaneous Localization And Mapping (SLAM) of Pioneer II mobile robots. A simulation experiment was performed, where an autonomous virtual mobile robot with sonar sensors evolves in a virtual world map with obstacles. By comparing the result of building map according to the general fusion machine (here DSmT-based fusing machine and PCR5-based conflict redistributor considereded) coupling with ESMS filter and without ESMS filter, it shows the benefit of the selection of the sources as a prerequisite for improvement of the information fusion, and also testifies the superiority of the UFA in dealing with SLAM.

Keywords: DSmT, ESMS filter, SLAM, UFA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
1246 A New Approach for Controlling Overhead Traveling Crane Using Rough Controller

Authors: Mazin Z. Othman

Abstract:

This paper presents the idea of a rough controller with application to control the overhead traveling crane system. The structure of such a controller is based on a suggested concept of a fuzzy logic controller. A measure of fuzziness in rough sets is introduced. A comparison between fuzzy logic controller and rough controller has been demonstrated. The results of a simulation comparing the performance of both controllers are shown. From these results we infer that the performance of the proposed rough controller is satisfactory.

Keywords: Accuracy measure, Fuzzy Logic Controller (FLC), Overhead Traveling Crane (OTC), Rough Set Theory (RST), Roughness measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
1245 Error-Robust Nature of Genome Profiling Applied for Clustering of Species Demonstrated by Computer Simulation

Authors: Shamim Ahmed Koichi Nishigaki

Abstract:

Genome profiling (GP), a genotype based technology, which exploits random PCR and temperature gradient gel electrophoresis, has been successful in identification/classification of organisms. In this technology, spiddos (Species identification dots) and PaSS (Pattern similarity score) were employed for measuring the closeness (or distance) between genomes. Based on the closeness (PaSS), we can buildup phylogenetic trees of the organisms. We noticed that the topology of the tree is rather robust against the experimental fluctuation conveyed by spiddos. This fact was confirmed quantitatively in this study by computer-simulation, providing the limit of the reliability of this highly powerful methodology. As a result, we could demonstrate the effectiveness of the GP approach for identification/classification of organisms.

Keywords: Fluctuation, Genome profiling (GP), Pattern similarity score (PaSS), Robustness, Spiddos-shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
1244 Applications of Rough Set Decompositions in Information Retrieval

Authors: Chen Wu, Xiaohua Hu

Abstract:

This paper proposes rough set models with three different level knowledge granules in incomplete information system under tolerance relation by similarity between objects according to their attribute values. Through introducing dominance relation on the discourse to decompose similarity classes into three subclasses: little better subclass, little worse subclass and vague subclass, it dismantles lower and upper approximations into three components. By using these components, retrieving information to find naturally hierarchical expansions to queries and constructing answers to elaborative queries can be effective. It illustrates the approach in applying rough set models in the design of information retrieval system to access different granular expanded documents. The proposed method enhances rough set model application in the flexibility of expansions and elaborative queries in information retrieval.

Keywords: Incomplete information system, Rough set model, tolerance relation, dominance relation, approximation, decomposition, elaborative query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
1243 A Survey of Model Comparison Strategies and Techniques in Model Driven Engineering

Authors: Junaid Rashid, Waqar Mehmood, Muhammad Wasif Nisar

Abstract:

This survey paper shows the recent state of model comparison as it’s applies to Model Driven engineering. In Model Driven Engineering to calculate the difference between the models is a very important and challenging task. There are number of tasks involved in model differencing that firstly starts with identifying and matching the elements of the model. In this paper, we discuss how model matching is accomplished, the strategies, techniques and the types of the model. We also discuss the future direction. We found out that many of the latest model comparison strategies are geared near enabling Meta model and similarity based matching. Therefore model versioning is the most dominant application of the model comparison. Recently to work on comparison for versioning has begun to deteriorate, giving way to different applications. Ultimately there is wide change among the tools in the measure of client exertion needed to perform model comparisons, as some require more push to encourage more sweeping statement and expressive force.

Keywords: Model comparison, model clone detection, model versioning, EMF Model, model diff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
1242 A Numerical Solution Based On Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar

Abstract:

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: Operational matrix of differentiation, Similarity transformation, Shifted second kind Chebyshev wavelets, Stefan problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
1241 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Authors: Hae-Yeoun Lee

Abstract:

Mosaic refers to a technique that makes image by gathering lots of small materials in various colors. This paper presents an automatic algorithm that makes the photo-mosaic image using photos. The algorithm is composed of 4 steps: partition and feature extraction, block matching, redundancy removal and color adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Keywords: Photo-mosaic, Euclidean distance, Block matching, Intensity adjustment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3571
1240 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces

Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet

Abstract:

In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.

Keywords: Dropwise condensation, textured surface, image processing, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
1239 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric

Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah

Abstract:

Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.

Keywords: Image registration, mutual information, image gradients, Image transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
1238 Application of Intuitionistic Fuzzy Cross Entropy Measure in Decision Making for Medical Diagnosis

Authors: Shikha Maheshwari, Amit Srivastava

Abstract:

In medical investigations, uncertainty is a major challenging problem in making decision for doctors/experts to identify the diseases with a common set of symptoms and also has been extensively increasing in medical diagnosis problems. The theory of cross entropy for intuitionistic fuzzy sets (IFS) is an effective approach in coping uncertainty in decision making for medical diagnosis problem. The main focus of this paper is to propose a new intuitionistic fuzzy cross entropy measure (IFCEM), which aid in reducing the uncertainty and doctors/experts will take their decision easily in context of patient’s disease. It is shown that the proposed measure has some elegant properties, which demonstrates its potency. Further, it is also exemplified in detail the efficiency and utility of the proposed measure by using a real life case study of diagnosis the disease in medical science.

Keywords: Intuitionistic fuzzy cross entropy (IFCEM), intuitionistic fuzzy set (IFS), medical diagnosis, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
1237 A Bootstrap's Reliability Measure on Tests of Hypotheses

Authors: Al Jefferson J. Pabelic, Dennis A. Tarepe

Abstract:

Bootstrapping has gained popularity in different tests of hypotheses as an alternative in using asymptotic distribution if one is not sure of the distribution of the test statistic under a null hypothesis. This method, in general, has two variants – the parametric and the nonparametric approaches. However, issues on reliability of this method always arise in many applications. This paper addresses the issue on reliability by establishing a reliability measure in terms of quantiles with respect to asymptotic distribution, when this is approximately correct. The test of hypotheses used is Ftest. The simulated results show that using nonparametric bootstrapping in F-test gives better reliability than parametric bootstrapping with relatively higher degrees of freedom.

Keywords: F-test, nonparametric bootstrapping, parametric bootstrapping, reliability measure, tests of hypotheses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
1236 A Study on Finding Similar Document with Multiple Categories

Authors: R. Saraçoğlu, N. Allahverdi

Abstract:

Searching similar documents and document management subjects have important place in text mining. One of the most important parts of similar document research studies is the process of classifying or clustering the documents. In this study, a similar document search approach that includes discussion of out the case of belonging to multiple categories (multiple categories problem) has been carried. The proposed method that based on Fuzzy Similarity Classification (FSC) has been compared with Rocchio algorithm and naive Bayes method which are widely used in text mining. Empirical results show that the proposed method is quite successful and can be applied effectively. For the second stage, multiple categories vector method based on information of categories regarding to frequency of being seen together has been used. Empirical results show that achievement is increased almost two times, when proposed method is compared with classical approach.

Keywords: Document similarity, Fuzzy classification, Multiple categories, Text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1235 Optimal Convolutive Filters for Real-Time Detection and Arrival Time Estimation of Transient Signals

Authors: Michal Natora, Felix Franke, Klaus Obermayer

Abstract:

Linear convolutive filters are fast in calculation and in application, and thus, often used for real-time processing of continuous data streams. In the case of transient signals, a filter has not only to detect the presence of a specific waveform, but to estimate its arrival time as well. In this study, a measure is presented which indicates the performance of detectors in achieving both of these tasks simultaneously. Furthermore, a new sub-class of linear filters within the class of filters which minimize the quadratic response is proposed. The proposed filters are more flexible than the existing ones, like the adaptive matched filter or the minimum power distortionless response beamformer, and prove to be superior with respect to that measure in certain settings. Simulations of a real-time scenario confirm the advantage of these filters as well as the usefulness of the performance measure.

Keywords: Adaptive matched filter, minimum variance distortionless response, beam forming, Capon beam former, linear filters, performance measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1234 Real Time Speed Estimation of Vehicles

Authors: Azhar Hussain, Kashif Shahzad, Chunming Tang

Abstract:

this paper gives a novel approach towards real-time speed estimation of multiple traffic vehicles using fuzzy logic and image processing techniques with proper arrangement of camera parameters. The described algorithm consists of several important steps. First, the background is estimated by computing median over time window of specific frames. Second, the foreground is extracted using fuzzy similarity approach (FSA) between estimated background pixels and the current frame pixels containing foreground and background. Third, the traffic lanes are divided into two parts for both direction vehicles for parallel processing. Finally, the speeds of vehicles are estimated by Maximum a Posterior Probability (MAP) estimator. True ground speed is determined by utilizing infrared sensors for three different vehicles and the results are compared to the proposed algorithm with an accuracy of ± 0.74 kmph.

Keywords: Defuzzification, Fuzzy similarity approach, lane cropping, Maximum a Posterior Probability (MAP) estimator, Speed estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
1233 Effect of Neighborhood Size on Negative Weights in Punctual Kriging Based Image Restoration

Authors: Asmatullah Chaudhry, Anwar M. Mirza

Abstract:

We present a general comparison of punctual kriging based image restoration for different neighbourhood sizes. The formulation of the technique under consideration is based on punctual kriging and fuzzy concepts for image restoration in spatial domain. Three different neighbourhood windows are considered to estimate the semivariance at different lags for studying its effect in reduction of negative weights resulted in punctual kriging, consequently restoration of degraded images. Our results show that effect of neighbourhood size higher than 5x5 on reduction in negative weights is insignificant. In addition, image quality measures, such as structure similarity indices, peak signal to noise ratios and the new variogram based quality measures; show that 3x3 window size gives better performance as compared with larger window sizes.

Keywords: Image restoration, punctual kriging, semi-variance, structure similarity index, negative weights in punctual kriging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
1232 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance

Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie

Abstract:

Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.

Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
1231 Parallezation Protein Sequence Similarity Algorithms using Remote Method Interface

Authors: Mubarak Saif Mohsen, Zurinahni Zainol, Rosalina Abdul Salam, Wahidah Husain

Abstract:

One of the major problems in genomic field is to perform sequence comparison on DNA and protein sequences. Executing sequence comparison on the DNA and protein data is a computationally intensive task. Sequence comparison is the basic step for all algorithms in protein sequences similarity. Parallel computing is an attractive solution to provide the computational power needed to speedup the lengthy process of the sequence comparison. Our main research is to enhance the protein sequence algorithm using dynamic programming method. In our approach, we parallelize the dynamic programming algorithm using multithreaded program to perform the sequence comparison and also developed a distributed protein database among many PCs using Remote Method Interface (RMI). As a result, we showed how different sizes of protein sequences data and computation of scoring matrix of these protein sequence on different number of processors affected the processing time and speed, as oppose to sequential processing.

Keywords: Protein sequence algorithm, dynamic programming algorithm, multithread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
1230 Prediction of Research Topics Using Ensemble of Best Predictors from Similar Dataset

Authors: Indra Budi, Rizal Fathoni Aji, Agus Widodo

Abstract:

Prediction of future research topics by using time series analysis either statistical or machine learning has been conducted previously by several researchers. Several methods have been proposed to combine the forecasting results into single forecast. These methods use fixed combination of individual forecast to get the final forecast result. In this paper, quite different approach is employed to select the forecasting methods, in which every point to forecast is calculated by using the best methods used by similar validation dataset. The dataset used in the experiment is time series derived from research report in Garuda, which is an online sites belongs to the Ministry of Education in Indonesia, over the past 20 years. The experimental result demonstrates that the proposed method may perform better compared to the fix combination of predictors. In addition, based on the prediction result, we can forecast emerging research topics for the next few years.

Keywords: Combination, emerging topics, ensemble, forecasting, machine learning, prediction, research topics, similarity measure, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
1229 Video-Based Face Recognition Based On State-Space Model

Authors: Cheng-Chieh Chiang, Yi-Chia Chan, Greg C. Lee

Abstract:

This paper proposes a video-based framework for face recognition to identify which faces appear in a video sequence. Our basic idea is like a tracking task - to track a selection of person candidates over time according to the observing visual features of face images in video frames. Hence, we employ the state-space model to formulate video-based face recognition by dividing this problem into two parts: the likelihood and the transition measures. The likelihood measure is to recognize whose face is currently being observed in video frames, for which two-dimensional linear discriminant analysis is employed. The transition measure estimates the probability of changing from an incorrect recognition at the previous stage to the correct person at the current stage. Moreover, extra nodes associated with head nodes are incorporated into our proposed state-space model. The experimental results are also provided to demonstrate the robustness and efficiency of our proposed approach.

Keywords: 2DLDA, face recognition, state-space model, likelihood measure, transition measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
1228 OCIRS: An Ontology-based Chinese Idioms Retrieval System

Authors: Hu Haibo, Tu Chunmei, Fu Chunlei, Fu Li, Mao Fan, Ma Yuan

Abstract:

Chinese Idioms are a type of traditional Chinese idiomatic expressions with specific meanings and stereotypes structure which are widely used in classical Chinese and are still common in vernacular written and spoken Chinese today. Currently, Chinese Idioms are retrieved in glossary with key character or key word in morphology or pronunciation index that can not meet the need of searching semantically. OCIRS is proposed to search the desired idiom in the case of users only knowing its meaning without any key character or key word. The user-s request in a sentence or phrase will be grammatically analyzed in advance by word segmentation, key word extraction and semantic similarity computation, thus can be mapped to the idiom domain ontology which is constructed to provide ample semantic relations and to facilitate description logics-based reasoning for idiom retrieval. The experimental evaluation shows that OCIRS realizes the function of searching idioms via semantics, obtaining preliminary achievement as requested by the users.

Keywords: Chinese idiom, idiom retrieval, semantic searching, ontology, semantics similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
1227 On Generalized Exponential Fuzzy Entropy

Authors: Rajkumar Verma, Bhu Dev Sharma

Abstract:

In the present communication, the existing measures of fuzzy entropy are reviewed. A generalized parametric exponential fuzzy entropy is defined.Our study of the four essential and some other properties of the proposed measure, clearly establishes the validity of the measure as an entropy.

Keywords: fuzzy sets, fuzzy entropy, exponential entropy, exponential fuzzy entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2856
1226 Detecting Remote Protein Evolutionary Relationships via String Scoring Method

Authors: Nazar Zaki, Safaai Deris

Abstract:

The amount of the information being churned out by the field of biology has jumped manifold and now requires the extensive use of computer techniques for the management of this information. The predominance of biological information such as protein sequence similarity in the biological information sea is key information for detecting protein evolutionary relationship. Protein sequence similarity typically implies homology, which in turn may imply structural and functional similarities. In this work, we propose, a learning method for detecting remote protein homology. The proposed method uses a transformation that converts protein sequence into fixed-dimensional representative feature vectors. Each feature vector records the sensitivity of a protein sequence to a set of amino acids substrings generated from the protein sequences of interest. These features are then used in conjunction with support vector machines for the detection of the protein remote homology. The proposed method is tested and evaluated on two different benchmark protein datasets and it-s able to deliver improvements over most of the existing homology detection methods.

Keywords: Protein homology detection; support vectormachine; string kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
1225 Computational Analysis of Potential Inhibitors Selected Based On Structural Similarity for the Src SH2 Domain

Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai

Abstract:

The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.

Keywords: Nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
1224 Computational Method for Annotation of Protein Sequence According to Gene Ontology Terms

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias

Abstract:

Annotation of a protein sequence is pivotal for the understanding of its function. Accuracy of manual annotation provided by curators is still questionable by having lesser evidence strength and yet a hard task and time consuming. A number of computational methods including tools have been developed to tackle this challenging task. However, they require high-cost hardware, are difficult to be setup by the bioscientists, or depend on time intensive and blind sequence similarity search like Basic Local Alignment Search Tool. This paper introduces a new method of assigning highly correlated Gene Ontology terms of annotated protein sequences to partially annotated or newly discovered protein sequences. This method is fully based on Gene Ontology data and annotations. Two problems had been identified to achieve this method. The first problem relates to splitting the single monolithic Gene Ontology RDF/XML file into a set of smaller files that can be easy to assess and process. Thus, these files can be enriched with protein sequences and Inferred from Electronic Annotation evidence associations. The second problem involves searching for a set of semantically similar Gene Ontology terms to a given query. The details of macro and micro problems involved and their solutions including objective of this study are described. This paper also describes the protein sequence annotation and the Gene Ontology. The methodology of this study and Gene Ontology based protein sequence annotation tool namely extended UTMGO is presented. Furthermore, its basic version which is a Gene Ontology browser that is based on semantic similarity search is also introduced.

Keywords: automatic clustering, bioinformatics tool, gene ontology, protein sequence annotation, semantic similarity search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3128
1223 Military Combat Aircraft Selection Using Trapezoidal Fuzzy Numbers with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Authors: C. Ardil

Abstract:

This article presents a new approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the proposed approach, fuzzy decision information related to the aircraft selection problem is taken into account in ranking the alternatives and selecting the best one. The basic procedural step is to transform the fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A numerical example illustrates the proposed approach for the military combat aircraft selection problem.

Keywords: trapezoidal fuzzy numbers, multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473
1222 Feature Selection with Kohonen Self Organizing Classification Algorithm

Authors: Francesco Maiorana

Abstract:

In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.

Keywords: Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
1221 Exploiting Global Self Similarity for Head-Shoulder Detection

Authors: Lae-Jeong Park, Jung-Ho Moon

Abstract:

People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.

Keywords: Pedestrian detection, cascade of rejecters, feature extraction, self-symmetry, HOG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
1220 Composite Programming for Electric Passenger Car Selection in Multiple Criteria Decision Making

Authors: C. Ardil

Abstract:

This paper discusses the use of the composite programming method to identify the optimum electric passenger automobile in multiple criteria decision making. With the composite programming approach, a set of alternatives are compared using an optimality measure that gauges how far apart they are from the optimum solution. In this paper, some key factors (range, battery, engine, maximum speed, acceleration) that customers should consider while purchasing an electric passenger car for daily use are discussed. A numerical illustration is provided to demonstrate the validity and applicability of the proximity measure approach

Keywords: electric passenger car selection, multiple criteria decision making, proximity measure method, composite programming, entropic weight method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332
1219 A New Measure of Herding Behavior: Derivation and Implications

Authors: Amina Amirat, Abdelfettah Bouri

Abstract:

If price and quantity are the fundamental building blocks of any theory of market interactions, the importance of trading volume in understanding the behavior of financial markets is clear. However, while many economic models of financial markets have been developed to explain the behavior of prices -predictability, variability, and information content- far less attention has been devoted to explaining the behavior of trading volume. In this article, we hope to expand our understanding of trading volume by developing a new measure of herding behavior based on a cross sectional dispersion of volumes betas. We apply our measure to the Toronto stock exchange using monthly data from January 2000 to December 2002. Our findings show that the herd phenomenon consists of three essential components: stationary herding, intentional herding and the feedback herding.

Keywords: Herding behavior, market return, trading volume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
1218 NEAR: Visualizing Information Relations in Multimedia Repository A•VI•RE

Authors: Qian, C. Z., Chen, V. Y., R. F. Woodbury

Abstract:

This paper describes the NEAR (Navigating Exhibitions, Annotations and Resources) panel, a novel interactive visualization technique designed to help people navigate and interpret groups of resources, exhibitions and annotations by revealing hidden relations such as similarities and references. NEAR is implemented on A•VI•RE, an extended online information repository. A•VI•RE supports a semi-structured collection of exhibitions containing various resources and annotations. Users are encouraged to contribute, share, annotate and interpret resources in the system by building their own exhibitions and annotations. However, it is hard to navigate smoothly and efficiently in A•VI•RE because of its high capacity and complexity. We present a visual panel that implements new navigation and communication approaches that support discovery of implied relations. By quickly scanning and interacting with NEAR, users can see not only implied relations but also potential connections among different data elements. NEAR was tested by several users in the A•VI•RE system and shown to be a supportive navigation tool. In the paper, we further analyze the design, report the evaluation and consider its usage in other applications.

Keywords: measure similarity, trace reference, inherentrelation, information visualization, online multimedia repository

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299