Search results for: Olive Mill Wastewater
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 373

Search results for: Olive Mill Wastewater

253 Investigating the Treatability of a Compost Leachate in a Hybrid Anaerobic Reactor: An Experimental Study

Authors: Shima Rajabi, Leila Vafajoo

Abstract:

Compost manufacturing plants are one of units where wastewater is produced in significantly large amounts. Wastewater produced in these plants contains high amounts of substrate (organic loads) and is classified as stringent waste which creates significant pollution when discharged into the environment without treatment. A compost production plant in the one of the Iran-s province treating 200 tons/day of waste is one of the most important environmental pollutant operations in this zone. The main objectives of this paper are to investigate the compost wastewater treatability in hybrid anaerobic reactors with an upflow-downflow arrangement, to determine the kinetic constants, and eventually to obtain an appropriate mathematical model. After starting the hybrid anaerobic reactor of the compost production plant, the average COD removal rate efficiency was 95%.

Keywords: Leachate treatment, anaerobic hybrid reactor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
252 Effect of Domestic Treated Wastewater use on Three Varieties of Quinoa (Chenopodium quinoa) under Semi Arid Conditions

Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Ba Samba M., Hirich A

Abstract:

The purpose of this work was to study the effect of the irrigation using waste water with various electric conductivities (T(0,92ds/m), EC3 (3ds/m) and EC6 (6ds/m) on three varieties of quinoa cultivated in a field south of Morocco. The follow up of the evolution of the chemical and agronomic parameters throughout the culture made it possible to determine the responses to the saline stress in arid conditions. Results showed that the salinity caused the depression of plant-s height, and reduced the fresh and dry weight in the different parts of the three varieties plants. The increase of the irrigation water EC didn-t affect the yield for the varieties. Thus, quinoa resisted to salinity and proved a behavior of a facultative halophyte crop. In fact, the cultivation of this using treated wastewater is feasible especially in arid areas for a sustainable use of water resources.

Keywords: Quinoa, salinity, semi-arid, treated wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
251 Quality Parameters of Offset Printing Wastewater

Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana

Abstract:

Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.

Keywords: Pollution, printing industry, simple linear regression analysis, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
250 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer

Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja–Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin

Abstract:

New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1–3 bars and in range of flow rate of 50–150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50–70 l/m2h. The obtained turbidity decrease was in the range of 50-99 % and total amount of suspended solids was removed.

Keywords: Ceramic membrane, microfiltration, sugar industry, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
249 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling

Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali

Abstract:

This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.

Keywords: Laser-sintered material, tool life, wear mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
248 The Household Behavior on Solid Waste and Wastewater Management in Municipal Area with Cleanliness Policy Determined by Community

Authors: Paiboon Jeamponk

Abstract:

The Bangnanglee Sub-district Administrative Office, Thailand had initiated a policy to environmental protection with encouraging household waste management in order to promote civil responsibility for domestic hygienic. This research studied the household behaviors on solid waste and wastewater management. A sample population of 306 families answered a questionnaire. The study showed that, on average, domestic activities had produced 1.93 kilograms of waste per household per day. It has been found that 79% of the households made several attempts to reduce their own amount of waste. 80% of the households stationed their own garbage bins. 71% managed their waste by selling recyclable products. As for the rest of the waste, 51% burned them, while 29% disposed their waste in the nearby public trashcans and other 13% have them buried. As for wastewater, 60% of the households disposed it into the sewage, whereas 30% disposed them right from their elevated house.

Keywords: Environmental integrated management, environmental protection, household waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
247 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: Ceramic membrane, edible oil, microfiltration, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
246 Internal Behavior of Biological Nutrient Removal System for Advanced Wastewater Treatment

Authors: J. K. Choi , D. W. Kim, H. S. Shin, H. J. Yeon, B. K. Kim, Yeon. Fan, D. Chang, S. B. Han, J.M. Hur, B. R. Jung, S. M. Park

Abstract:

The purpose of this research was develop a biological nutrient removal (BNR) system which has low energy consumption, sludge production, and land usage. These indicate that BNR system could be a alternative of future wastewater treatment in ubiquitous city(U-city). Organics and nitrogen compounds could be removed by this system so that secondary or tertiary stages of wastewater treatment satisfy their standards. This system was composed of oxic and anoxic filter filed with PVDC and POM media. Anoxic/oxic filter system operated under empty bed contact time of 4 hours by increasing recirculation ratio from 0 to 100 %. The system removals of total nitrogen and COD were 76.3% and 93%, respectively. To be observed internal behavior in this system SCOD, NH3-N, and NO3-N were conducted and removal shows range of 25~100%, 59~99%, and 70~100%, respectively.

Keywords: BNR, nitrification, denitrification, organics removal, anoxic, oxic, advanced treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
245 Removal of Hexavalent Chromium from Wastewater by Use of Scrap Iron

Authors: Marius Gheju, Rodica Pode

Abstract:

Hexavalent chromium is highly toxic to most living organisms and a known human carcinogen by the inhalation route of exposure. Therefore, treatment of Cr(VI) contaminated wastewater is essential before their discharge to the natural water bodies. Cr(VI) reduction to Cr(III) can be beneficial because a more mobile and more toxic chromium species is converted to a less mobile and less toxic form. Zero-valence-state metals, such as scrap iron, can serve as electron donors for reducing Cr(VI) to Cr(III). The influence of pH on scrap iron capacity to reduce Cr(VI) was investigated in this study. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the pH, the greater the experiment duration with maximum scrap iron reduction capacity. The experimental results showed that highest maximum reduction capacity of scrap iron was 12.5 mg Cr(VI)/g scrap iron, at pH 2.0, and decreased with increasing pH up to 1.9 mg Cr(VI)/g scrap iron at pH = 7.3.

Keywords: hexavalent chromium, heavy metals, scrap iron, reduction capacity, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
244 Evaluation Biofilm Sewage Treatment Plant

Authors: K. M. Shahot. I. A. Ekhmaj

Abstract:

The research study is carried out to determine the efficiency of the Biofilm sewage treatment plant which is located at the Engineering Complex-s. Wastewater analyses have been carried out at the Environmental Engineering laboratory to study the six parameters: Biochemical Oxygen Demand BOD, Chemical Oxygen Demand COD l, and Total Suspended Solids TSS, Ammoniac Nitrogen NH3-N and Phosphorous P which have been selected to determine the wastewater quality. The plant was designed to treat 750 Pe (population equivalent) at hydraulic retention time of 5 hours in the aerobic zone. The results show that Biofilm wastewater treatment plant was able to treat sewage successfully at different flow condition. The discharge has fulfilled the Malaysia Environmental of Standard A water quality. The achieved BOD removal is more than 85%, COD is more than 80%, TSS is more than 80%, NH3-N is more than 70%, and P was more than 70%. The Biofilm system provides a very efficient process for sewage treatment and it is compact in structure thus minimizes the required land area.

Keywords: Sewage, Bio film, Cosmo-Ball, Activated sludge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
243 Industrial Wastewater Sludge Treatment in Chongqing, China

Authors: Victor Emery David Jr, Jiang Wenchao, Yasinta John, Md. Sahadat Hossain

Abstract:

Sludge originates from the process of treatment of wastewater. It is the byproduct of wastewater treatment containing concentrated heavy metals and poorly biodegradable trace organic compounds, as well as potentially pathogenic organisms (viruses, bacteria, etc.) which are usually difficult to treat or dispose of. China, like other countries, is no stranger to the challenges posed by increase of wastewater. Treatment and disposal of sludge has been a problem for most cities in China. However, this problem has been exacerbated by other issues such as lack of technology, funding, and other factors. Suitable methods for such climatic conditions are still unavailable for modern cities in China. Against this background, this paper seeks to describe the methods used for treatment and disposal of sludge from industries and suggest a suitable method for treatment and disposal in Chongqing/China. From the research conducted, it was discovered that the highest treatment rate of sludge in Chongqing was 10.08%. The industrial waste piping system is not separated from the domestic system. Considering the proliferation of industry and urbanization, there is a likelihood that the production of sludge in Chongqing will increase. If the sludge produced is not properly managed, this may lead to adverse health and environmental effects. Disposal costs and methods for Chongqing were also included in this paper’s analysis. Research showed that incineration is the most expensive method of sludge disposal in China/Chongqing. Subsequent research therefore considered optional alternatives such as composting. Composting represents a relatively cheap waste disposal method considering the vast population, current technology and economic conditions of Chongqing, as well as China at large.

Keywords: Sludge, disposal of sludge, treatment, industrial sludge, Chongqing, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
242 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process

Authors: A. Benhadji, M. Taleb Ahmed

Abstract:

Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.

Keywords: Advanced oxidation processes, chemical oxygen demand, COD, detergent, peroxi electrocoagulation process, PEP, wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
241 Producing Sustained Renewable Energy and Removing Organic Pollutants from Distillery Wastewater using Consortium of Sludge Microbes

Authors: Anubha Kaushik, Raman Preet

Abstract:

Distillery wastewater in the form of spent wash is a complex and strong industrial effluent, with high load of organic pollutants that may deplete dissolved oxygen on being discharged into aquatic systems and contaminate groundwater by leaching of pollutants, while untreated spent wash disposed on land acidifies the soil. Stringent legislative measures have therefore been framed in different countries for discharge standards of distillery effluent. Utilising the organic pollutants present in various types of wastes as food by mixed microbial populations is emerging as an eco-friendly approach in the recent years, in which complex organic matter is converted into simpler forms, and simultaneously useful gases are produced as renewable and clean energy sources. In the present study, wastewater from a rice bran based distillery has been used as the substrate in a dark fermenter, and native microbial consortium from the digester sludge has been used as the inoculum to treat the wastewater and produce hydrogen. After optimising the operational conditions in batch reactors, sequential batch mode and continuous flow stirred tank reactors were used to study the best operational conditions for enhanced and sustained hydrogen production and removal of pollutants. Since the rate of hydrogen production by the microbial consortium during dark fermentation is influenced by concentration of organic matter, pH and temperature, these operational conditions were optimised in batch mode studies. Maximum hydrogen production rate (347.87ml/L/d) was attained in 32h dark fermentation while a good proportion of COD also got removed from the wastewater. Slightly acidic initial pH seemed to favor biohydrogen production. In continuous stirred tank reactor, high H2 production from distillery wastewater was obtained from a relatively shorter substrate retention time (SRT) of 48h and a moderate organic loading rate (OLR) of 172 g/l/d COD.

Keywords: Distillery wastewater, hydrogen, microbial consortium, organic pollution, sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
240 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, Josiah Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (μmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (d¯¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: Brewery wastewater, methane generation model, environment, anaerobic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4207
239 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: EIoT, machine learning, anomaly detection, environment monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026
238 Aeration Optimization in an Activated Sludge Wastewater Treatment Plant Based on CFD Method: A Case Study

Authors: Seyed Sina Khamesi, Rana Rafiei

Abstract:

The extensive aeration process is widely used for wastewater treatment. However, due to the high energy consumption of this process, which is closely related to the issues of environmental sustainability and global climate change, this article presents a simple solution to reduce energy consumption in this process. The amount of required energy is one of the critical considerations for various wastewater treatment techniques. For this purpose, an industrial wastewater treatment plant and all energy-consumer equipment in terms of energy consumption have been analyzed. The investigations and measurements revealed that the aeration unit has the highest energy consumption rate. To address this, an innovative approach is proposed to reduce energy consumption in the identified high-consumer unit. The proposed solution involves introducing baffles to divide the tank into multiple parts and using a tank with a small width and long length to enhance the mixing process. This approach reduces the need for additional equipment and significantly lowers energy consumption. To thoroughly scrutinize the proposed solution and analyze the behavior of the multi-phase fluid inside the tank, the sewage flow has been modeled using the computational fluid dynamics (CFD) method. The study presents an optimal design for the aeration unit based on these findings. The results indicate that implementing the technique suggested in this article can decrease total energy consumption by 33.15% and can be applied to all types of biological treatment plants.

Keywords: Wastewater treatment, aeration, energy consumption, Computational Fluid Dynamics, activated sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315
237 Hydrogen Production from Alcohol Wastewater by Upflow Anaerobic Sludge Blanket Reactors under Mesophilic Temperature

Authors: Thipsalin Poontaweegeratigarn, Sumaeth Chavadej, Pramoch Rangsunvigit

Abstract:

In this work, biohydrogen production via dark fermentation from alcohol wastewater using upflow anaerobic sludge blanket reactors (UASB) with a working volume of 4 L was investigated to find the optimum conditions for a maximum hydrogen yield. The system was operated at different COD loading rates (23, 31, 46 and 62 kg/m3d) at mesophilic temperature (37 ºC) and pH 5.5. The seed sludge was pretreated before being fed to the UASB system by boiling at 95 ºC for 15 min. When the system was operated under the optimum COD loading rate of 46 kg/m3d, it provided the hydrogen content of 27%, hydrogen yield of 125.1 ml H2/g COD removed and 95.1 ml H2/g COD applied, hydrogen production rate of 18 l/d, specific hydrogen production rate of 1080 ml H2/g MLVSS d and 1430 ml H2/ L d, and COD removal of 24%.

Keywords: Hydrogen production, Upflow anaerobic sludge blanket reactor (UASB), Optimum condition, Alcohol wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
236 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass

Authors: A. Driouiche, S. Mohareb, A. Hadfi

Abstract:

In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).

Keywords: Agadir, irrigation, scaling water, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
235 Novel Dual Stage Membrane Bioreactor for the Continuous Remediation of Electroplating Wastewater

Authors: B. A. Q. Santos, S. K. O. Ntwampe, G. Muchatibaya

Abstract:

In this study, the designed dual stage membrane bioreactor (MBR) system was conceptualized for the treatment of cyanide and heavy metals in electroplating wastewater. The design consisted of a primary treatment stage to reduce the impact of fluctuations and the secondary treatment stage to remove the residual cyanide and heavy metal contaminants in the wastewater under alkaline pH conditions. The primary treatment stage contained hydrolyzed Citrus sinensis (C. sinensis) pomace and the secondary treatment stage contained active Aspergillus awamori (A. awamori) biomass, supplemented solely with C. sinensis pomace extract from the hydrolysis process. An average of 76.37%, 95.37%, 93.26 and 94.76% and 99.55%, 99.91%, 99.92% and 99.92% degradation efficiency for total cyanide (T-CN), including the sorption of nickel (Ni), zinc (Zn) and copper (Cu) were observed after the first and second treatment stages, respectively. Furthermore, cyanide conversion by-products degradation was 99.81% and 99.75 for both formate (CHOO-) and ammonium (NH4 +) after the second treatment stage. After the first, second and third regeneration cycles of the C. sinensis pomace in the first treatment stage, Ni, Zn and Cu removal achieved was 99.13%, 99.12% and 99.04% (first regeneration cycle), 98.94%, 98.92% and 98.41% (second regeneration cycle) and 98.46 %, 98.44% and 97.91% (third regeneration cycle), respectively. There was relatively insignificant standard deviation detected in all the measured parameters in the system which indicated reproducibility of the remediation efficiency in this continuous system.

Keywords: Aspergillus awamori, Citrus sinensis pomace, electroplating wastewater remediation, membrane bioreactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
234 Heavy Metals Transport in the Soil Profiles under the Application of Sludge and Wastewater

Authors: A. Behbahaninia, S. A. Mirbagheri, A. H. Javid

Abstract:

Heavy metal transfer in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban area of developing countries. In this study soil samples under sludge application and wastewater irrigation were studied and soil samples were collected in the soil profiles from the surface to 100 cm in depth. For this purpose, three plots were made in a treatment plant in south of Tehran-Iran. First plot was irrigated just with effluent from wastewater treatment plant, second plot with simulated heavy metals concentration equal 50 years irrigation and in third plot sewage sludge and effluent was used. Trace metals concentration (Cd, Cu) were determined for soil samples. The results indicate movement of metals was observed, but the most concentration of metals was found in topsoil samples. The most of Cadmium concentration was measured in the topsoil of plot 3, 4.5mg/kg and Maximum cadmium movement was observed in 0-20 cm. The most concentration of copper was 27.76mg/kg, and maximum percolation in 0-20 cm. Metals (Cd, Cu) were measured in leached water. Preferential flow and metal complexation with soluble organic apparently allow leaching of heavy metals.

Keywords: Heavy metal, sludge, soil, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
233 Biosorption of Heavy Metals by Low Cost Adsorbents

Authors: Azam Tabatabaee, Fereshteh Dastgoshadeh, Akram Tabatabaee

Abstract:

This paper describes the use of by-products as adsorbents for removing heavy metals from aqueous effluent solutions. Products of almond skin, walnut shell, saw dust, rice bran and egg shell were evaluated as metal ion adsorbents in aqueous solutions. A comparative study was done with commercial adsorbents like ion exchange resins and activated carbon too. Batch experiments were investigated to determine the affinity of all of biomasses for, Cd(ΙΙ), Cr(ΙΙΙ), Ni(ΙΙ), and Pb(ΙΙ) metal ions at pH 5. The rate of metal ion removal in the synthetic wastewater by the biomass was evaluated by measuring final concentration of synthetic wastewater. At a concentration of metal ion (50 mg/L), egg shell adsorbed high levels (98.6 – 99.7%) of Pb(ΙΙ) and Cr(ΙΙΙ) and walnut shell adsorbed high levels (35.3 – 65.4%) of Ni(ΙΙ) and Cd(ΙΙ). In this study, it has been shown that by-products were excellent adsorbents for removal of toxic ions from wastewater with efficiency comparable to commercially available adsorbents, but at a reduced cost. Also statistical studies using Independent Sample t Test and ANOVA Oneway for statistical comparison between various elements adsorption showed that there isn’t a significant difference in some elements adsorption percentage by by-products and commercial adsorbents.

Keywords: Adsorbents, heavy metals, commercial adsorbents, wastewater, by-products.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
232 Nutrients Removal from Municipal Wastewater Treatment Plant Effluent using Eichhornia Crassipes

Authors: S. R. M. Kutty, S. N. I. Ngatenah, M. H. Isa, A. Malakahmad

Abstract:

Water hyacinth has been used in aquatic systems for wastewater purification in many years worldwide. The role of water hyacinth (Eichhornia crassipes) species in polishing nitrate and phosphorus concentration from municipal wastewater treatment plant effluent by phytoremediation method was evaluated. The objective of this project is to determine the removal efficiency of water hyacinth in polishing nitrate and phosphorus, as well as chemical oxygen demand (COD) and ammonia. Water hyacinth is considered as the most efficient aquatic plant used in removing vast range of pollutants such as organic matters, nutrients and heavy metals. Water hyacinth, also referred as macrophytes, were cultivated in the treatment house in a reactor tank of approximately 90(L) x 40(W) x 25(H) in dimension and built with three compartments. Three water hyacinths were placed in each compartments and water sample in each compartment were collected in every two days. The plant observation was conducted by weight measurement, plant uptake and new young shoot development. Water hyacinth effectively removed approximately 49% of COD, 81% of ammonia, 67% of phosphorus and 92% of nitrate. It also showed significant growth rate at starting from day 6 with 0.33 shoot/day and they kept developing up to 0.38 shoot/day at the end of day 24. From the studies conducted, it was proved that water hyacinth is capable of polishing the effluent of municipal wastewater which contains undesirable amount of nitrate and phosphorus concentration.

Keywords: water hyacinth, phytoremediation, nutrient removal, Eichhornia crassipes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3209
231 Decolorization of Reactive Black 5 and Reactive Red 198 using Nanoscale Zerovalent Iron

Authors: C. Chompuchan, T. Satapanajaru, P. Suntornchot, P. Pengthamkeerati

Abstract:

Residual dye contents in textile dyeing wastewater have complex aromatic structures that are resistant to degrade in biological wastewater treatment. The objectives of this study were to determine the effectiveness of nanoscale zerovalent iron (NZVI) to decolorize Reactive Black 5 (RB5) and Reactive Red 198 (RR198) in synthesized wastewater and to investigate the effects of the iron particle size, iron dosage and solution pHs on the destruction of RB5 and RR198. Synthesized NZVI was confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The removal kinetic rates (kobs) of RB5 (0.0109 min-1) and RR198 (0.0111 min-1) by 0.5% NZVI were many times higher than those of microscale zerovalent iron (ZVI) (0.0007 min-1 and 0.0008 min-1, respectively). The iron dosage increment exponentially increased the removal efficiencies of both RB5 and RR198. Additionally, lowering pH from 9 to 5 increased the decolorization kinetic rates of both RB5 and RR198 by NZVI. The destruction of azo bond (N=N) in the chromophore of both reactive dyes led to decolorization of dye solutions.

Keywords: decolorization, nanoscale zerovalent iron, Reactive Black 5, Reactive Red 198.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
230 Contribution of On-Site and Off-Site Processes to Greenhouse Gas (GHG) Emissions by Wastewater Treatment Plants

Authors: Laleh Yerushalmi, Fariborz Haghighat, Maziar Bani Shahabadi

Abstract:

The estimation of overall on-site and off-site greenhouse gas (GHG) emissions by wastewater treatment plants revealed that in anaerobic and hybrid treatment systems greater emissions result from off-site processes compared to on-site processes. However, in aerobic treatment systems, onsite processes make a higher contribution to the overall GHG emissions. The total GHG emissions were estimated to be 1.6, 3.3 and 3.8 kg CO2-e/kg BOD in the aerobic, anaerobic and hybrid treatment systems, respectively. In the aerobic treatment system without the recovery and use of the generated biogas, the off-site GHG emissions were 0.65 kg CO2-e/kg BOD, accounting for 40.2% of the overall GHG emissions. This value changed to 2.3 and 2.6 kg CO2-e/kg BOD, and accounted for 69.9% and 68.1% of the overall GHG emissions in the anaerobic and hybrid treatment systems, respectively. The increased off-site GHG emissions in the anaerobic and hybrid treatment systems are mainly due to material usage and energy demand in these systems. The anaerobic digester can contribute up to 100%, 55% and 60% of the overall energy needs of plants in the aerobic, anaerobic and hybrid treatment systems, respectively.

Keywords: On-site and off-site greenhouse gas (GHG)emissions, wastewater treatment plants, biogas recovery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
229 Scope of BOD, Nitrogen and Phosphorous Removal through Plant-Soil Interaction in the Wetland

Authors: Debabrata Mazumder

Abstract:

Constructed and natural wetlands are being used extensively to treat different types of wastewater including the domestic one. Considerable removal efficiency has been achieved for a variety of pollutants like BOD, nitrogen and phosphorous in the wetlands. Wetland treatment appears to be the best choice for treatment or pre-treatment of wastewater because of the low maintenance cost and simplicity of operation. Wetlands are the natural exporters of organic carbon on account of decomposition of organic matter. The emergent plants like reeds, bulrushes and cattails are commonly used in constructed wetland for the treatment process providing surface for bacterial growth, filtration of solids, nutrient uptake and oxygenation to promote nitrification as well as denitrification. The present paper explored different scopes of organic matter (BOD), nitrogen and phosphorous removal from wastewater through wetlands. Emphasis is given to look into the soil chemistry for tracing the behavior of carbon, nitrogen and phosphorus in the wetland. Due consideration is also made to see the viability for upgrading the BOD, nitrogen and phosphorus removal efficiency through different classical modifications of wetland.

Keywords: BOD removal, modification, nitrogen removal, phosphorous removal, wetland.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
228 Selective Sulfidation of Copper, Zinc and Nickelin Plating Wastewater using Calcium Sulfide

Authors: K. Soya, N. Mihara, D. Kuchar, M. Kubota, H. Matsuda, T. Fukuta

Abstract:

The present work is concerned with sulfidation of Cu, Zn and Ni containing plating wastewater with CaS. The sulfidation experiments were carried out at a room temperature by adding solid CaS to simulated metal solution containing either single-metal of Ni, Zn and Cu, or Ni-Zn-Cu mixture. At first, the experiments were conducted without pH adjustment and it was found that the complete sulfidation of Zn and Ni was achieved at an equimolar ratio of CaS to a particular metal. However, in the case of Cu, a complete copper sulfidation was achieved at CaS to Cu molar ratio of about 2. In the case of the selective sulfidation, a simulated plating solution containing Cu, Zn and Ni at the concentration of 100 mg/dm3 was treated with CaS under various pH conditions. As a result, selective precipitation of metal sulfides was achieved by a sulfidation treatment at different pH values. Further, the precipitation agents of NaOH, Na2S and CaS were compared in terms of the average specific filtration resistance and compressibility coefficients of metal sulfide slurry. Consequently, based on the lowest filtration parameters of the produced metal sulfides, it was concluded that CaS was the most effective precipitation agent for separation and recovery of Cu, Zn and Ni.

Keywords: Calcium sulfide, Plating Wastewater, Filtrationcharacteristics, Heavy metals, Sulfidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
227 Synthesis and Application of Tamarind Hydroxypropane Sulphonic Acid Resin for Removal of Heavy Metal Ions from Industrial Wastewater

Authors: Aresh Vikram Singh, Sarika Nagar

Abstract:

The tamarind based resin containing hydroxypropane sulphonic acid groups has been synthesized and their adsorption behavior for heavy metal ions has been investigated using batch and column experiments. The hydroxypropane sulphonic acid group has been incorporated onto tamarind by a modified Porath's method of functionalisation of polysaccharides. The tamarind hydroxypropane sulphonic acid (THPSA) resin can selectively remove of heavy metal ions, which are contained in industrial wastewater. The THPSA resin was characterized by FTIR and thermogravimetric analysis. The effects of various adsorption conditions, such as pH, treatment time and adsorbent dose were also investigated. The optimum adsorption condition was found at pH 6, 120 minutes of equilibrium time and 0.1 gram of resin dose. The orders of distribution coefficient values were determined.

Keywords: Distribution coefficient, industrial wastewater, polysaccharides, tamarind hydroxypropane sulphonic acid resin, thermogravimetric analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967
226 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The asprepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: Microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3506
225 Phytoremediation Rates of Water Hyacinth in an Aquaculture Effluent Hydroponic System

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Conventional wastewater treatment plants of activated carbon, electrodialysis, ion exchange, reverse osmosis etc. are expensive to install, operate and maintain especially in developing countries; therefore, the use of aquatic macrophytes for wastewater purification is a viable alternative. On the first day of experimentation, approximately 100g of water hyacinth was introduced into the hydroponic units in four replicates. The water quality parameters measured were total suspended solids (TSS), pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), phosphate–phosphorus (PO43--P), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 438.2 g, 600.7 g, 688.2 g and 725.7 g. Water hyacinth was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 1.9% to 14.7%, EC from 49.8% to 97.0%, TDS from 50.4% to 97.6%, TSS from 34.0% to 78.3%, NH4+-N from 38.9% to 85.2%, NO2--N from 0% to 84.6%, NO3--N from 63.2% to 98.8% and PO43--P from 10% to 88.0%. Paired sample t-test shows that at 95% confidence level, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests that the use of water hyacinth is valuable in the design and operation of aquaculture effluent treatment and should therefore be adopted by environmental and wastewater managers.

Keywords: Aquaculture effluent, phytoremediation, pollutant, water hyacinth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
224 Effect of Domestic Treated Wastewater use on Three Varieties of Amaranth (Amaranthus spp.) under Semi Arid Conditions

Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Sarr F, Hirich A.

Abstract:

An experiment was implemented in a filed in the south of Morocco to evaluate the effects of domestic treated wastewater use for irrigation of amaranth crop under semi-arid conditions. Three varieties (A0020, A0057 & A211) were tested and irrigated using domestic treated wastewater EC1 (0,92 dS/m) as control, EC3 (3dS/m) and EC6 (6dS/m) obtained by adding sea water. In term of growth, an increase of the EC level of applied irrigation water reduced significantly the plant-s height, leaf area, fresh and dry weight measured at vegetative, flowering and maturity stage for all varieties. Even with the application of the EC6, yields were relatively higher in comparison with the once obtained in normal cultivation conditions. A significant accumulation of nitrate, chloride and sodium in soil layers during the crop cycle was noted. The use of treated waste water for its irrigation is proved to be possible. The variety A211 had showed to be less sensitive to salinity stress and it could be more promising its introduction to study area.

Keywords: Amaranth, salinity, semi-arid, treated waste water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017