Search results for: Differentiated Thyroid Cancer
227 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image
Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei
Abstract:
Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766226 Adverse Reactions from Contrast Media in Patients Undergone Computed Tomography at the Department of Radiology, Srinagarind Hospital
Authors: Pranee Suecharoen, Jaturat Kanpittaya
Abstract:
Background: The incidence of adverse reactions to iodinated contrast media has risen. The dearth of reports on reactions to the administration of iso- and low-osmolar contrast media should be addressed. We, therefore, studied the profile of adverse reactions to iodinated contrast media; viz., (a) the body systems affected (b) causality, (c) severity, and (d) preventability. Objective: To study adverse reactions (causes and severity) to iodinated contrast media at Srinagarind Hospital. Method: Between March and July, 2015, 1,101 patients from the Department of Radiology were observed and interviewed for the occurrence of adverse reactions. The patients were classified per Naranjo’s algorithm and through use of an adverse reactions questionnaire. Results: A total of 105 cases (9.5%) reported adverse reactions (57% male; 43% female); among whom 2% were iso-osmolar vs. 98% low-osmolar. Diagnoses included hepatoma and cholangiocarcinoma (24.8%), colorectal cancer (9.5%), breast cancer (5.7%), cervical cancer (3.8%), lung cancer (2.9%), bone cancer (1.9%), and others (51.5%). Underlying diseases included hypertension and diabetes mellitus type 2. Mild, moderate, and severe adverse reactions accounted for 92, 5 and 3%, respectively. The respective groups of escalating symptoms included (a) mild urticaria, itching, rash, nausea, vomiting, dizziness, and headache; (b) moderate hypertension, hypotension, dyspnea, tachycardia and bronchospasm; and (c) severe laryngeal edema, profound hypotension, and convulsions. All reactions could be anticipated per Naranjo’s algorithm. Conclusion: Mild to moderate adverse reactions to low-osmolar contrast media were most common and these occurred immediately after administration. For patient safety and better outcomes, improving the identification of patients likely to have an adverse reaction is essential.
Keywords: Adverse reactions, contrast media, computed tomography, iodinated contrast agents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061225 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks
Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng
Abstract:
Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.
Keywords: Biological molecular networks, essential genes, graph theory, network subgraphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495224 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays
Authors: M. Anidha, K. Premalatha
Abstract:
Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.
Keywords: Gene selection, mutual information, Fisher score, classification, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152223 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT
Authors: A. Sindhuja, V. Sadasivam
Abstract:
Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.
Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207222 Potential Effects of Human Bone Marrow Non- Mesenchymal Mononuclear Cells on Neuronal Differentiation
Authors: Chareerut Phruksaniyom, Khwanthana Grataitong, Permphan Dharmasaroja, Surapol Issaragrisil
Abstract:
Bone marrow-derived stem cells have been widely studied as an alternative source of stem cells. Mesenchymal stem cells (MSCs) were mostly investigated and studies showed MSCs can promote neurogenesis. Little is known about the non-mesenchymal mononuclear cell fraction, which contains both hematopoietic and nonhematopoietic cells, including monocytes and endothelial progenitor cells. This study focused on unfractionated bone marrow mononuclear cells (BMMCs), which remained 72 h after MSCs were adhered to the culture plates. We showed that BMMC-conditioned medium promoted morphological changes of human SH-SY5Y neuroblastoma cells from an epithelial-like phenotype towards a neuron-like phenotype as indicated by an increase in neurite outgrowth, like those observed in retinoic acid (RA)-treated cells. The result could be explained by the effects of trophic factors released from BMMCs, as shown in the RT-PCR results that BMMCs expressed nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF). Similar results on the cell proliferation rate were also observed between RA-treated cells and cells cultured in BMMC-conditioned medium, suggesting that cells creased proliferating and differentiated into a neuronal phenotype. Using real-time RT-PCR, a significantly increased expression of tyrosine hydroxylase (TH) mRNA in SHSY5Y cells indicated that BMMC-conditioned medium induced catecholaminergic identities in differentiated SH-SY5Y cells.Keywords: bone marrow, neuronal differentiation, neurite outgrowth, trophic factor, tyrosine hydroxylase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572221 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location
Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa
Abstract:
This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.
Keywords: Specific absorption rate (SAR), ultra wideband (UWB), coordinates and cancer detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749220 Packaging the Alkaloids of Cinchona Bark in Combination with Etoposide in Polymeric Micelles Nanoparticles
Authors: Diky Mudhakir, Satrialdi, Sukmadjaja Asyarie, Yeyet C. Sumirtapura
Abstract:
Today, cancer remains one of the major diseases that lead to death. The main obstacle in chemotherapy as a main cancer treatment is the toxicity to normal cells due to Multidrug Resistance (MDR) after the use of anticancer drugs. Proposed solution to overcome this problem is the use of MDR efflux inhibitor of cinchona alkaloids which is delivered together with anticancer drugs encapsulated in the form of polymeric nanoparticles. The particles were prepared by the hydration method. The characterization of nanoparticles was particle size, zeta potential, entrapment efficiency and in vitro drug release. Combination nanoparticle size ranged 29-45 nm with a neutral surface charge. Entrapment efficiency was above 87% for the use quinine, quinidine or cinchonidine in combination with etoposide. The release test results exhibited that the cinchona alkaloids release released faster than that of etoposide. Collectively, cinchona alkaloids can be packaged along with etoposide in nanomicelles for better cancer therapy.Keywords: Cinchona alkaloids, etoposide, MDR efflux inhitor, polymeric nanomicelles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362219 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671218 Absorbed Dose Estimation of 177Lu-DOTATOC in Adenocarcinoma Breast Cancer Bearing Mice
Authors: S. Zolghadri, M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani
Abstract:
In this study, the absorbed dose of human organs after injection of 177Lu-DOTATOC was studied based on the biodistribution of the complex in adenocarcinoma breast cancer bearing mice. For this purpose, the biodistribution of the radiolabelled complex was studied and compartmental modeling was applied to calculate the absorbed dose with high precision. As expected, 177Lu-DOTATOC illustrated a notable specific uptake in tumor and pancreas, organs with high level of somatostatin receptor on their surface and the effectiveness of the radio-conjugate for targeting of the breast adenocarcinoma tumors was indicated. The elicited results of modeling were the exponential equations, and those are utilized for obtaining the cumulated activity data by taking their integral. The results also exemplified that non-target absorbed-doses such as the liver, spleen and pancreas were approximately 0.008, 0.004, and 0.039, respectively. While these values were so much lower than target (tumor) absorbed-dose, it seems due to this low toxicity, this complex is a good agent for therapy.Keywords: Breast cancer, compartmental modeling, 177Lu, dosimetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746217 Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison
Authors: Frank Emmert-Streib, Matthias Dehmer, Jing Liu, Max Muhlhauser
Abstract:
The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.
Keywords: Graph similarity, generalized trees, graph alignment, DNA microarray data, cervical cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753216 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening
Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu
Abstract:
Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.
Keywords: Breast Cancer Screening, Radiology, Thermalytix, Artificial Intelligence, Thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829215 Data Mining for Cancer Management in Egypt Case Study: Childhood Acute Lymphoblastic Leukemia
Authors: Nevine M. Labib, Michael N. Malek
Abstract:
Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily comprehensible to humans. One of the useful applications in Egypt is the Cancer management, especially the management of Acute Lymphoblastic Leukemia or ALL, which is the most common type of cancer in children. This paper discusses the process of designing a prototype that can help in the management of childhood ALL, which has a great significance in the health care field. Besides, it has a social impact on decreasing the rate of infection in children in Egypt. It also provides valubale information about the distribution and segmentation of ALL in Egypt, which may be linked to the possible risk factors. Undirected Knowledge Discovery is used since, in the case of this research project, there is no target field as the data provided is mainly subjective. This is done in order to quantify the subjective variables. Therefore, the computer will be asked to identify significant patterns in the provided medical data about ALL. This may be achieved through collecting the data necessary for the system, determimng the data mining technique to be used for the system, and choosing the most suitable implementation tool for the domain. The research makes use of a data mining tool, Clementine, so as to apply Decision Trees technique. We feed it with data extracted from real-life cases taken from specialized Cancer Institutes. Relevant medical cases details such as patient medical history and diagnosis are analyzed, classified, and clustered in order to improve the disease management.Keywords: Data Mining, Decision Trees, Knowledge Discovery, Leukemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215214 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method
Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez
Abstract:
Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.
Keywords: Ferrites, heating capability, hemolysis, nanoparticles, sol-gel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903213 Training Radial Basis Function Networks with Differential Evolution
Authors: Bing Yu , Xingshi He
Abstract:
In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.
Keywords: differential evolution, neural network, Rbf function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051212 Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks
Authors: Simone C. F. Neves, Lúcio F. A. Campos, Ewaldo Santana, Ginalber L. O. Serra, Allan K. Barros
Abstract:
We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.Keywords: Cancer ovarian, Proteomic patterns in serum, independent component analysis and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831211 Colorectal Cancer Screening by a CEACAM-6 Immunosensor
Authors: C. T. S. Ching, P. W. C hen, T. P. Sun, H. L. Shieh
Abstract:
The biomarker for colorectal cancer (CRC) is CEACAM-6 antigen (C6AG). Therefore, this study aims to develop a novel, simple and low-cost CEACAM-6 antigen immumosensor (C6AG-IMS), based on electrical impedance measurement, for precise determination of C6AG. A low-cost screen-printed graphite electrode was constructed and used as the sensor, with CEACAM-6 antibody (C6AB) immobilized on it. The procedures of sensor fabrication and antibody immobilization are simple and low-cost. Measurement of the electrical impedance at a definite frequency ranges (0.43 – 1.26 MHz) showed that the C6AG-IMS has an excellent linear (r2>0.9) response range (8.125 – 65 pg/mL), covering the normal physiological and pathological ranges of blood C6AG levels. Also, the C6AG-IMS has excellent reliability and validity, with the intraclass correlation coefficient being 0.97. In conclusion, a novel, simple, low-cost and reliable C6AG-IMS was designed and developed, being able to accurately determine blood C6AG levels in the range of pathological and normal physiological regions. The C6AG-IMS can provide a point-of-care and immediate screening results to the user at home.Keywords: Colorectal Cancer, Immunosensor, Electrical Impedance, CEACAM-6, Measurement, Point-of-Care
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637210 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia
Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli
Abstract:
In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ- Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5 and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ- Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.
Keywords: Nanocomposite, hyperthermia, cancer therapy, drug release.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4745209 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870208 Data Mining Techniques in Computer-Aided Diagnosis: Non-Invasive Cancer Detection
Authors: Florin Gorunescu
Abstract:
Diagnosis can be achieved by building a model of a certain organ under surveillance and comparing it with the real time physiological measurements taken from the patient. This paper deals with the presentation of the benefits of using Data Mining techniques in the computer-aided diagnosis (CAD), focusing on the cancer detection, in order to help doctors to make optimal decisions quickly and accurately. In the field of the noninvasive diagnosis techniques, the endoscopic ultrasound elastography (EUSE) is a recent elasticity imaging technique, allowing characterizing the difference between malignant and benign tumors. Digitalizing and summarizing the main EUSE sample movies features in a vector form concern with the use of the exploratory data analysis (EDA). Neural networks are then trained on the corresponding EUSE sample movies vector input in such a way that these intelligent systems are able to offer a very precise and objective diagnosis, discriminating between benign and malignant tumors. A concrete application of these Data Mining techniques illustrates the suitability and the reliability of this methodology in CAD.Keywords: Endoscopic ultrasound elastography, exploratorydata analysis, neural networks, non-invasive cancer detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867207 Microencapsulation of Probiotic, Evaluation for Viability and Cytotoxic Activities of Its Postbiotic Metabolites on MCF-7 Breast Cancer Cell Line
Authors: N. V. Enwuru, B. Nkeki, E. A. Adekoya, O. A. Adebesin, B. O. Ojo, R. F. Peters, V. A. Aikhomu, U. E. Mendie, O. Akinloye
Abstract:
Awareness about probiotic health benefits is increasing tremendously. However, cell viability is often low due to harsh conditions exposed during processing, handling, storage, and gastrointestinal transit. Thus, encapsulation is a promising technique that increases cell viability. The study aims to encapsulate the probiotic, evaluate its viability and cytotoxic activity of its postbiotic on the Michigan Cancer Foundation (MCF)-7 breast cancer cell line. Human and animal raw milk was sampled for lactic acid bacteria. Isolated bacteria were identified using conventional and VITEK 2 systems. The identified bacteria were encapsulated using the spray-drying method. The free and encapsulated probiotic cells were exposed to simulated gastric intestinal (SGI) fluid conditions and different storage conditions for their viability. The properties of the formed probiotic granules, their disintegration time, and the weight uniformity of the microcapsules were tested. Furthermore, the postbiotic of the free cells was extracted, and its cytotoxic effect on the MCF-7 breast cancer cell line was tested through [3-(4,5-dimethylthiazolyl-2)-2,5 diphenyltetrazolium bromide] (MTT) assay. The bacteria isolated were identified as Lactobacillus plantarum. The size of the formed probiotic granules ranges within 0.71-1.00 mm in diameter, and disintegration time ranges from 2.14 ± 0.045 to 2.91 ± 0.293 minutes, while the average weight is 502.1 mg. The viability of encapsulated cells stored at refrigerated condition (4oC) was higher than that of cells stored at room temperature (25 oC). The encapsulated probiotic cells exhibited better viability after exposure to SGI solution at different pH levels than free cells. The Postbiotic Metabolites (PM) of L. plantarum produced a cytotoxic effect that shows significant activity similar to 5FU, a standard antineoplastic agent. The inhibition concentration of 50% growth (IC50) of postbiotic metabolite was consistent with the IC50 of the positive control (Cisplatin). Lactobacillus plantarum postbiotic exhibited a cytotoxic effect on the MCF-7 breast cancer cell line and could be used as combined adjuvant therapy in breast cancer management. The microencapsulation technique protects the probiotics and maintains their viability.
Keywords: Cytotoxicity effect, encapsulation, postbiotic, probiotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107206 Fractal Dimension of Breast Cancer Cell Migration in a Wound Healing Assay
Authors: R. Sullivan, T. Holden, G. Tremberger, Jr, E. Cheung, C. Branch, J. Burrero, G. Surpris, S. Quintana, A. Rameau, N. Gadura, H. Yao, R. Subramaniam, P. Schneider, S. A. Rotenberg, P. Marchese, A. Flamhlolz, D. Lieberman, T. Cheung
Abstract:
Migration in breast cancer cell wound healing assay had been studied using image fractal dimension analysis. The migration of MDA-MB-231 cells (highly motile) in a wound healing assay was captured using time-lapse phase contrast video microscopy and compared to MDA-MB-468 cell migration (moderately motile). The Higuchi fractal method was used to compute the fractal dimension of the image intensity fluctuation along a single pixel width region parallel to the wound. The near-wound region fractal dimension was found to decrease three times faster in the MDA-MB- 231 cells initially as compared to the less cancerous MDA-MB-468 cells. The inner region fractal dimension was found to be fairly constant for both cell types in time and suggests a wound influence range of about 15 cell layer. The box-counting fractal dimension method was also used to study region of interest (ROI). The MDAMB- 468 ROI area fractal dimension was found to decrease continuously up to 7 hours. The MDA-MB-231 ROI area fractal dimension was found to increase and is consistent with the behavior of a HGF-treated MDA-MB-231 wound healing assay posted in the public domain. A fractal dimension based capacity index has been formulated to quantify the invasiveness of the MDA-MB-231 cells in the perpendicular-to-wound direction. Our results suggest that image intensity fluctuation fractal dimension analysis can be used as a tool to quantify cell migration in terms of cancer severity and treatment responses.Keywords: Higuchi fractal dimension, box-counting fractal dimension, cancer cell migration, wound healing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544205 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection
Authors: P. Bountris, E. Farantatos, N. Apostolou
Abstract:
Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433204 Health Risk Assessment of Heavy Metals Adsorbed in Particulates
Authors: Sadovska V.
Abstract:
The progress of concentrations of particular heavy metals was assessed in chosen localities in region Moravia, the Czech Republic, from 2007 to 2009. Particular metals were observed in localities with various types and characterization of zone. Pb, Ni, As and Cd were emphasized as a result of their toxicity and potential adverse health effect to the exposed population. The progress of metal concentrations and their health effects in the most polluted localities were examined. According to the results, the air pollution limit values were not exceeded. Based on the health risk assessment, the probability of developing tumorous diseases is acceptable, except for the increased probability of cancer risk from long-term exposure to As.
Keywords: Air pollution, heavy metals, health risk assessment, individual lifetime cancer risk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410203 Morphological Description of Cervical Cell Images for the Pathological Recognition
Authors: N. Lassouaoui, L. Hamami, N. Nouali
Abstract:
The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.
Keywords: Cervical cell, morphological analysis, recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940202 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.
Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442201 Different Teaching Methods for Program Design and Algorithmic Language
Authors: Yue Zhao, Jianping Li
Abstract:
This paper covers the present situation and problem of experimental teaching of mathematics specialty in recent years, puts forward and demonstrates experimental teaching methods for different education. From the aspects of content and experimental teaching approach, uses as an example the course “Experiment for Program Designing & Algorithmic Language" and discusses teaching practice and laboratory course work. In addition a series of successful methods and measures are introduced in experimental teaching.Keywords: Differentiated teaching, experimental teaching, program design and algorithmic language, teaching method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632200 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components
Authors: M. Rodionov, Z. Dedovets
Abstract:
This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaningmaking characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.
Keywords: Learning activity, mathematics, motivation, student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954199 Automated Knowledge Engineering
Authors: Sandeep Chandana, Rene V. Mayorga, Christine W. Chan
Abstract:
This article outlines conceptualization and implementation of an intelligent system capable of extracting knowledge from databases. Use of hybridized features of both the Rough and Fuzzy Set theory render the developed system flexibility in dealing with discreet as well as continuous datasets. A raw data set provided to the system, is initially transformed in a computer legible format followed by pruning of the data set. The refined data set is then processed through various Rough Set operators which enable discovery of parameter relationships and interdependencies. The discovered knowledge is automatically transformed into a rule base expressed in Fuzzy terms. Two exemplary cancer repository datasets (for Breast and Lung Cancer) have been used to test and implement the proposed framework.Keywords: Knowledge Extraction, Fuzzy Sets, Rough Sets, Neuro–Fuzzy Systems, Databases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787198 Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System
Authors: A. Gruzdz, A. Ihnatowicz, J. Siddiqi, B. Akhgar
Abstract:
MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.Keywords: Bioinformatics, gene expression, ontology, selforganizingmaps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974