Search results for: patterns classification
386 The Role of Driving Experience in Hazard Perception and Categorization: A Traffic-Scene Paradigm
Authors: Avinoam Borowsky, Tal Oron-Gilad, Yisrael Parmet
Abstract:
This study examined the role of driving experience in hazard perception and categorization using traffic scene pictures. Specifically, young-inexperienced, moderately experienced and very experienced (taxi) drivers observed traffic scene pictures while connected to an eye tracking system and were asked to rate the level of hazardousness of each picture and to mention the three most prominent hazards in it. Target pictures included nine, nearly identical, pairs of pictures where one picture in each pair included an actual hazard as an additional element. Altogether, 22 areas of interest (AOIs) were predefined and included 13 potential hazards and 9 actual hazards. Data analysis included both verbal reports and eye scanning patterns of these AOIs. Generally, both experienced and taxi drivers noted a relatively larger number of potential hazards than young inexperienced drivers Thus, by relating to less salient potential hazards, experienced drivers have demonstrated a better situation model of the traffic environment.
Keywords: Concept Construction, Hazard Perception, EyeMovements, Driving Experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669385 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.
Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531384 Digital Privacy Legislation Awareness
Authors: Henry Foulds, Magda Huisman, Gunther R. Drevin
Abstract:
Privacy is regarded as a fundamental human right and it is clear that the study of digital privacy is an important field. Digital privacy is influenced by new and constantly evolving technologies and this continuous change makes it hard to create legislation to protect people’s privacy from being exploited by misuse of these technologies.
This study aims to benefit digital privacy legislation efforts by evaluating the awareness and perceived importance of digital privacy legislation among computer science students. The chosen fixed variables for the population are study year and gamer classification.
The use of location based services in mobile applications and games are a concern for digital privacy. For this reason the study focused on computer science students as they have a high likelihood to use and develop this type of software. Surveys were used to evaluate awareness and perceived importance of digital privacy legislation.
The results of the study show that privacy legislation and awareness of privacy legislation are important to people. The perception of the importance of privacy legislation increases with academic experience. Awareness of privacy legislation increases from non-gamers to pro gamers.
Keywords: Digital privacy, Legislation awareness, Gaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997383 Seasonal Influence on Environmental Indicators of Beach Waste
Authors: Marcus C. Garcia, Giselle C. Guimarães, Luciana H. Yamane, Renato R. Siman
Abstract:
The environmental indicators and the classification of beach waste are essential tools to diagnose the current situation and to indicate ways to improve the quality of this environment. The purpose of this paper was to perform a quali-quantitative analysis of the beach waste on the Curva da Jurema Beach (Espírito Santo - Brazil). Three transects were used with equidistant positioning over the total length of the beach for the solid waste collection. Solid wastes were later classified according to their use and primary raw material from the low and high summer season. During the low season, average values of 7.10 items.m-1, 18.22 g.m-1 and 0.91 g.m-2 were found for the whole beach, and transect 3 contributed the most waste, with the total sum of items equal to 999 (49%), a total mass of 5.62 kg and a total volume of 21.31 L. During the high summer season, average values of 8.22 items.m-1, 54.40 g.m-1 and 2.72 g.m-2 were found, with transect 2 contributing the most to the total sum with 1,212 items (53%), a total mass of 10.76 kg and a total volume of 51.99 L. Of the total collected, plastic materials represented 51.4% of the total number of items, 35.9% of the total mass and 68% of the total volume. The implementation of reactive and proactive measures is necessary so that the management of the solid wastes on Curva da Jurema Beach is in accordance with principles of sustainability.Keywords: Beach solid waste, environmental indicators, quali-quantitative analysis, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402382 Vision Based Hand Gesture Recognition Using Generative and Discriminative Stochastic Models
Authors: Mahmoud Elmezain, Samar El-shinawy
Abstract:
Many approaches to pattern recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features. Generative and discriminative models have very different characteristics, as well as complementary strengths and weaknesses. In this paper, we study these models to recognize the patterns of alphabet characters (A-Z) and numbers (0-9). To handle isolated pattern, generative model as Hidden Markov Model (HMM) and discriminative models like Conditional Random Field (CRF), Hidden Conditional Random Field (HCRF) and Latent-Dynamic Conditional Random Field (LDCRF) with different number of window size are applied on extracted pattern features. The gesture recognition rate is improved initially as the window size increase, but degrades as window size increase further. Experimental results show that the LDCRF is the best in terms of results than CRF, HCRF and HMM at window size equal 4. Additionally, our results show that; an overall recognition rates are 91.52%, 95.28%, 96.94% and 98.05% for CRF, HCRF, HMM and LDCRF respectively.
Keywords: Statistical Pattern Recognition, Generative Model, Discriminative Model, Human Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2940381 Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls
Authors: Muhammad Naseem Baig, Abdul Qudoos Khan, Jamal Ali
Abstract:
Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of a 64-ft deep excavation in mixed stiff soil conditions supported by cantilever pile wall. A series of finite element analysis has been carried out in Plaxis 2D by varying the pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of the wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of the wall. The finite element analysis results are compared with the field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of the 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.
Keywords: Excavations, support systems, wall stiffness, cantilever walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449380 Eye-Gesture Analysis for Driver Hazard Awareness
Authors: Siti Nor Hafizah binti Mohd Zaid, Mohamed Abdel-Maguid, Abdel-Hamid Soliman
Abstract:
Because road traffic accidents are a major source of death worldwide, attempts have been made to create Advanced Driver Assistance Systems (ADAS) able to detect vehicle, driver and environmental conditions that are cues for possible potential accidents. This paper presents continued work on a novel Nonintrusive Intelligent Driver Assistance and Safety System (Ni-DASS) for assessing driver attention and hazard awareness. It uses two onboard CCD cameras – one observing the road and the other observing the driver-s face. The windscreen is divided into cells and analysis of the driver-s eye-gaze patterns allows Ni-DASS to determine the windscreen cell the driver is focusing on using eye-gesture templates. Intersecting the driver-s field of view through the observed windscreen cell with subsections of the camera-s field of view containing a potential hazard allows Ni-DASS to estimate the probability that the driver has actually observed the hazard. Results have shown that the proposed technique is an accurate enough measure of driver observation to be useful in ADAS systems.Keywords: Advanced Driver Assistance Systems (ADAS), Driver Hazard Awareness, Driver Vigilance, Eye Tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184379 Comparison of Machine Learning Techniques for Single Imputation on Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.
Keywords: Machine Learning, audiograms, data imputations, single imputations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174378 Definition, Structure and Core Functions of the State Image
Authors: Rosa Nurtazina, Yerkebulan Zhumashov, Maral Tomanova
Abstract:
Humanity is entering an era when "virtual reality" as the image of the world created by the media with the help of the Internet does not match the reality in many respects, when new communication technologies create a fundamentally different and previously unknown "global space". According to these technologies, the state begins to change the basic technology of political communication of the state and society, the state and the state. Nowadays image of the state becomes the most important tool and technology.
Image is a purposefully created image granting political object (person, organization, country, etc.) certain social and political values and promoting more emotional perception.
Political image of the state plays an important role in international relations. The success of the country's foreign policy, development of trade and economic relations with other countries depends on whether it is positive or negative. Foreign policy image has an impact on political processes taking place in the state: the negative image of the country's can be used by opposition forces as one of the arguments to criticize the government and its policies.
Keywords: Image of the country, country's image classification, function of the country image, country's image components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3755377 Spatial Pattern and GIS-Based Model for Risk Assessment – A Case Study of Dusit District, Bangkok
Authors: Morakot Worachairungreung
Abstract:
The objectives of the research are to study patterns of fire location distribution and develop techniques of Geographic Information System application in fire risk assessment for fire planning and management. Fire risk assessment was based on two factors: the vulnerability factor such as building material types, building height, building density and capacity for mitigation factor such as accessibility by road, distance to fire station, distance to hydrants and it was obtained from four groups of stakeholders including firemen, city planners, local government officers and local residents. Factors obtained from all stakeholders were converted into Raster data of GIS and then were superimposed on the data in order to prepare fire risk map of the area showing level of fire risk ranging from high to low. The level of fire risk was obtained from weighted mean of each factor based on the stakeholders. Weighted mean for each factor was obtained by Analytical Hierarchy Analysis.
Keywords: Fire Risk Assessment, Geographic Information System: GIS, Raster Analysis and Analytical Hierarchy Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210376 Negotiating Across Cultures: The Case of Hungarian Negotiators
Authors: Júlia Szőke
Abstract:
Negotiating across cultures needs consideration as different cultures have different norms, habits and behavioral patterns. The significance of cross-cultural negotiations lies in the fact that many business relationships have already failed due to the lack of cultural knowledge. Therefore, the paper deals with cross-cultural negotiations in case of Hungarian business negotiators. The aim of the paper is to introduce the findings of a two-phase research conducted among Hungarian business negotiators. In the first phase a qualitative research was conducted to reveal the importance of cultural differences in case of cross-cultural business negotiations from the viewpoint of Hungarian negotiators, whereas in the second phase a quantitative one was conducted to figure out whether cultural stereotypes affect the way how the respondents negotiate with people coming from different cultures. The research found out that in case of Hungarian negotiators it is mostly the lack of cultural knowledge that lurks behind the problems and miscommunication occurring during the negotiations. The research also revealed that stereotypes have an influence on the negotiation styles of Hungarian negotiators. The paper concludes that culture and cultural differences must be taken into consideration in case of cross-cultural negotiations so that problems and misunderstandings could be avoided.
Keywords: Business, culture, negotiations, stereotypes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1114375 Differences in the Perception of Behavior Problems in Pre-school Children among the Teachers and Parents
Authors: Jana Kožárová
Abstract:
Even the behavior problems in pre-school children might be considered as a transitional problem which may disappear by their transition into elementary school; it is an issue that needs a lot of attention because of the fact that the behavioral patterns are adopted in the children especially in this age. Common issue in the process of elimination of the behavior problems in the group of pre-school children is a difference in the perception of the importance and gravity of the symptoms. The underestimation of the children's problems by parents often result into conflicts with kindergarten teachers. Thus, the child does not get the support that his/her problems require and this might result into a school failure and can negatively influence his/her future school performance and success. The research sample consisted of 4 children with behavior problems, their teachers and parents. To determine the most problematic area in the child's behavior, Child Behavior Checklist (CBCL) filled by parents and Caregiver/Teacher Form (CTF-R) filled by teachers were used. Scores from the CBCL and the CTR-F were compared with Pearson correlation coefficient in order to find the differences in the perception of behavior problems in pre-school children.
Keywords: Behavior problems, child behavior checklist, caregiver/teacher form, Pearson correlation coefficient, pre-school age.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662374 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates
Authors: Pedro Llanos, Diego García
Abstract:
Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.
Keywords: Aerobatic maneuvers, G force, hypoxia, suborbital flight, commercial astronauts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 560373 Development of Fuzzy Logic Control Ontology for E-Learning
Authors: Muhammad Sollehhuddin A. Jalil, Mohd Ibrahim Shapiai, Rubiyah Yusof
Abstract:
Nowadays, ontology is common in many areas like artificial intelligence, bioinformatics, e-commerce, education and many more. Ontology is one of the focus areas in the field of Information Retrieval. The purpose of an ontology is to describe a conceptual representation of concepts and their relationships within a particular domain. In other words, ontology provides a common vocabulary for anyone who needs to share information in the domain. There are several ontology domains in various fields including engineering and non-engineering knowledge. However, there are only a few available ontology for engineering knowledge. Fuzzy logic as engineering knowledge is still not available as ontology domain. In general, fuzzy logic requires step-by-step guidelines and instructions of lab experiments. In this study, we presented domain ontology for Fuzzy Logic Control (FLC) knowledge. We give Table of Content (ToC) with middle strategy based on the Uschold and King method to develop FLC ontology. The proposed framework is developed using Protégé as the ontology tool. The Protégé’s ontology reasoner, known as the Pellet reasoner is then used to validate the presented framework. The presented framework offers better performance based on consistency and classification parameter index. In general, this ontology can provide a platform to anyone who needs to understand FLC knowledge.
Keywords: Engineering knowledge, fuzzy logic control ontology, ontology development, table of contents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175372 Gray Level Image Encryption
Authors: Roza Afarin, Saeed Mozaffari
Abstract:
The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.
Keywords: Correlation coefficients, Genetic algorithm, Image encryption, Image entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240371 Study of Pre-Handwriting Factors Necessary for Successful Handwriting in Children
Authors: Lalitchandra J. Shah, Katarzyna Bialek, Melinda L. Clarke, Jessica L. Jansson
Abstract:
Handwriting is essential to academic success; however, the current literature is limited in the identification of pre-handwriting skills. The purpose of this study was to identify the pre-handwriting skills, which occupational therapy practitioners deem important to handwriting success, as well as those which aid in intervention planning. The online survey instrument consisted of 33 questions that assessed various skills related to the development of handwriting, as well as captured demographic information. Both occupational therapists and occupational therapy assistants were included in the survey study. The survey found that the respondents were in agreement that purposeful scribbling, the ability of a child to copy (vertical/horizontal lines, circle, squares, and triangles), imitating an oblique cross, cognitive skills (attention, praxis, self-regulation, sequencing), grasp patterns, hand dominance, in hand manipulation skills (shift, translation, rotation), bilateral integration, stabilization of paper, crossing midline, and visual perception were important indicators of handwriting readiness. The results of the survey support existing research regarding the skills necessary for the successful development of handwriting in children.Keywords: Development, handwriting, occupational therapy, visual perceptual skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3427370 Effect of Co3O4 Nanoparticles Addition on (Bi,Pb)-2223 Superconductor
Authors: A. N. Jannah, R. Abd-Shukor, H. Abdullah
Abstract:
The effect of nano Co3O4 addition on the superconducting properties of (Bi, Pb)-2223 system was studied. The samples were prepared by the acetate coprecipitation method. The Co3O4 with different sizes (10-30 nm and 30-50 nm) from x=0.00 to 0.05 was added to Bi1.6Pb0.4Sr2Ca2Cu3Oy(Co3O4)x. Phase analysis by XRD method, microstructural examination by SEM and dc electrical resistivity by four point probe method were done to characterize the samples. The X-ray diffraction patterns of all the samples indicated the majority Bi-2223 phase along with minor Bi-2212 and Bi-2201 phases. The volume fraction was estimated from the intensities of Bi- 2223, Bi-2212 and Bi-2201 phase. The sample with x=0.01 wt% of the added Co3O4 (10-30 nm size) showed the highest volume fraction of Bi-2223 phase (72%) and the highest superconducting transition temperature, Tc (~102 K). The non-added sample showed the highest Tc(~103 K) compared to added samples with nano Co3O4 (30-50 nm size) added samples. Both the onset critical temperature Tc(onset) and zero electrical resistivity temperature Tc(R=0) were in the range of 103-115 ±1K and 91-103 ±1K respectively for samples with added Co3O4 (10-30 nm and 30-50 nm).Keywords: Bi(Pb)-Sr-Ca-Cu-O superconductor, coprecipitation, nano Co3O4, transition temperature TC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043369 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet
Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu
Abstract:
In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.
Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198368 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.
Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413367 Phase Transition Characteristics of Flame-Synthesized Gamma-Al2O3 Nanoparticles with Heat Treatment
Authors: Gyo Woo Lee
Abstract:
In this study, the phase transition characteristics of flame-synthesized γ-Al2O3 nanoparticles to α-Al2O3 have been investigated. The nanoparticles were synthesized by using a coflow hydrogen diffusion flame. The phase transition and particle characteristics of the Al2O3 nanoparticles were determined by examining the crystalline structure and the shape of the collected nanoparticles before and after the heat treatment. The morphology and crystal structure of the Al2O3 nanoparticles were determined from SEM images and XRD analyses, respectively. The measured specific surface area and averaged particle size were 63.44m2/g and 23.94nm, respectively. Based on the scanning electron microscope images and x-ray diffraction patterns, it is believed that the onset temperature of the phase transition to α-Al2O3 was existed near 1200oC. The averaged diameters of the sintered particles heat treated at 1,260oC were approximately 80nm.
Keywords: BET Specific Surface Area, Gamma-Al2O3 Nanoparticles, Flame Synthesis, Phase Transition, X-ray Diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5032366 Long Term Variability of Temperature in Armenia in the Context of Climate Change
Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim
Abstract:
The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961- 2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5°C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.Keywords: Air temperature, long-term variability, trend, climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220365 Study on Optimization Design of Pressure Hull for Underwater Vehicle
Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran
Abstract:
In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.
Keywords: Parameterization, response surface, structure optimization, pressure hull.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164364 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes
Authors: Muammer Kaya
Abstract:
The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.
Keywords: E-waste, WEEE, PCB, recycling, metal recovery, hydrometallurgy, pyrometallurgy, biohydrometallurgy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8352363 Implementation of Geo-knowledge Based Geographic Information System for Estimating Earthquake Hazard Potential at a Metropolitan Area, Gwangju, in Korea
Authors: Chang-Guk Sun, Jin-Soo Shin
Abstract:
In this study, an inland metropolitan area, Gwangju, in Korea was selected to assess the amplification potential of earthquake motion and provide the information for regional seismic countermeasure. A geographic information system-based expert system was implemented for reliably predicting the spatial geotechnical layers in the entire region of interesting by building a geo-knowledge database. Particularly, the database consists of the existing boring data gathered from the prior geotechnical projects and the surface geo-knowledge data acquired from the site visit. For practical application of the geo-knowledge database to estimate the earthquake hazard potential related to site amplification effects at the study area, seismic zoning maps on geotechnical parameters, such as the bedrock depth and the site period, were created within GIS framework. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site in the study area. KeywordsEarthquake hazard, geo-knowledge, geographic information system, seismic zonation, site period.Keywords: Earthquake hazard, geo-knowledge, geographic information system, seismic zonation, site period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667362 Tidal Data Analysis using ANN
Authors: Ritu Vijay, Rekha Govil
Abstract:
The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.Keywords: ANN, RBF, Tidal Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658361 Antibiotic Resistance Profile of Bacterial Isolates from Animal Farming Aquatic Environments and Meats in a Peri-Urban Community in South Korea
Authors: Hyunjin Rho, Bongjin Shin, Okbok Lee, Yu-Hyun Choi, Jiyoung Lee, Jaerang Rho
Abstract:
The increasing usage of antibiotics in the animal farming industry is an emerging worldwide problem contributing to the development of antibiotic resistance. The purpose of this work was to investigate the prevalence and antibiotic resistance profile of bacterial isolates collected from aquatic environments and meats in a peri-urban community in Daejeon, Korea. In an antibacterial susceptibility test, the bacterial isolates showed a high incidence of resistance (~ 26.04 %) to cefazolin, tetracycline, gentamycin, norfloxacin, erythromycin and vancomycin. The results from a test for multiple antibiotic resistance indicated that the isolates were displaying an approximately 5-fold increase in the incidence of multiple antibiotic resistance to combinations of two different antibiotics compared to combinations of three or more antibiotics. Most of the isolates showed multi-antibiotic resistance, and the resistance patterns were similar among the sampling groups. Sequencing data analysis of 16S rRNA showed that most of the resistant isolates appeared to be dominated by the classes Betaproteobacteria and Gammaproteobacteria in the phylum Proteobacteria.Keywords: Antibiotics, Antibiotic resistance, Antimicrobial resistance, Multi-resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232360 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness
Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed
Abstract:
A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157359 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577358 Microstructural and Electrochemical Investigation of Carbon Coated Nanograined LiFePO4 as Cathode Material for Li-Batteries
Authors: Rinlee Butch M. Cervera, Princess Stephanie P. Llanos
Abstract:
Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, pure LiFePO4 (LFP) and carbon-coated nanograined LiFePO4 (LFP-C) is synthesized and characterized for its microstructural properties. X-ray diffraction patterns of the synthesized samples can be indexed to an orthorhombic LFP structure with about 63 nm crystallite size as calculated by using Scherrer’s equation. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LFP and coating of amorphous carbon layer. Elemental mapping using energy dispersive spectroscopy analysis revealed the homogeneous dispersion of the compositional elements. In addition, galvanostatic charge and discharge measurements were investigated for the cathode performance of the synthesized LFP and LFP-C samples. The results showed that the carbon-coated sample demonstrated the highest capacity of about 140 mAhg-1 as compared to non-coated and micrograined sized commercial LFP.
Keywords: Ceramics, microstructure, electrochemical measurements, energy storage, transmission electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890357 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332