Search results for: Signal intensity.
319 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.
Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601318 Design of an Efficient Retimed CIC Compensation Filter
Authors: Vishal Awasthi, Krishna Raj
Abstract:
Unwanted side effects because of spectral aliasing and spectral imaging during signal processing would be the major concern over the sampling rate alteration. Multirate-multistage implementation of digital filter could come about a large computational saving than single rate filter suitable for sample rate conversion. This implementation can further improve through high-level architectural transformation in circuit level. Reallocating registers and relocating flip-flops across logic gates through retiming certainly a prominent sequential transformation technology, that optimize hardware circuits to achieve faster clocking speed without affecting the functionality. In this paper, we proposed an efficient compensated cascade Integrator comb (CIC) decimation filter structure that analyze the consequence of filter order variation which has a retimed FIR filter being compensator while using the cutset retiming technique and achieved an improvement in the passband droop by 14% to 39%, in computation time by 38.04%, 25.78%, 12.21%, 6.69% and 4.44% and reduction in path delay by 62.27%, 72%, 86.63%, 91.56% and 94.42% of 3, 6, 8, 12 and 24 order filter respectively than the non-retimed CIC compensation filter.
Keywords: Multirate Filtering, CIC decimation filter, Compensation theory, Retiming, Retiming algorithm, Filter order, Synchronous dataflow graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3706317 Design, Simulation and Experimental Realization of Nonlinear Controller for GSC of DFIG System
Authors: R.K. Behera, S.Behera
Abstract:
In a wind power generator using doubly fed induction generator (DFIG), the three-phase pulse width modulation (PWM) voltage source converter (VSC) is used as grid side converter (GSC) and rotor side converter (RSC). The standard linear control laws proposed for GSC provides not only instablity against comparatively large-signal disturbances, but also the problem of stability due to uncertainty of load and variations in parameters. In this paper, a nonlinear controller is designed for grid side converter (GSC) of a DFIG for wind power application. The nonlinear controller is designed based on the input-output feedback linearization control method. The resulting closed-loop system ensures a sufficient stability region, make robust to variations in circuit parameters and also exhibits good transient response. Computer simulations and experimental results are presented to confirm the effectiveness of the proposed control strategy.Keywords: Doubly fed Induction Generator, grid side converter, machine side converter, dc link, feedback linearization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121316 Effect of Wind and Humidity on Microwave Links in North West Libya
Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri
Abstract:
The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.
Keywords: Attenuation, scattering, transmission loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784315 Further Development in Predicting Post-Earthquake Fire Ignition Hazard
Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares
Abstract:
In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.Keywords: Fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361314 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes
Authors: Jihad S. Daba, J. P. Dubois
Abstract:
Fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper utilized a Poisson modulated-weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multidiversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.
Keywords: Cellular communication, femto- and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345313 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: Data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220312 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.
Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119311 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812310 Biomass and Pigment Production by Monascus during Miniaturized Submerged Culture on Adlay
Authors: Supavej Maniyom, Gerard H. Markx
Abstract:
Three reactor types were explored and successfully used for pigment production by Monascus: shake flasks, and shaken and stirred miniaturized reactors. Also, the use of dielectric spectroscopy for the on-line measurement of biomass levels was explored. Shake flasks gave good pigment yields, but scale up is difficult, and they cannot be automated. Shaken bioreactors were less successful with pigment production than stirred reactors. Experiments with different impeller speeds in different volumes of liquid in the reactor confirmed that this is most likely due oxygen availability. The availability of oxygen appeared to affect biomass levels less than pigment production; red pigment production in particular needed very high oxygen levels. Dielectric spectroscopy was effectively used to continuously measure biomass levels during the submerged fungal fermentation in the shaken and stirred miniaturized bioreactors, despite the presence of the solid substrate particles. Also, the capacitance signal gave useful information about the viability of the cells in the culture.Keywords: Chinese pearl barley, miniature submerged culture, Monascus pigment, biomass, capacitance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772309 The Influence of the Types of Smoke Powder and Storage Duration on Sensory Quality of Balinese Beef and Buffalo Meatballs
Authors: E. Abustam, M. I. Said, M. Yusuf, H. M. Ali
Abstract:
This study aims to examine the sensory quality of meatballs made from Balinese beef and buffalo meat after the addition of smoke powder prior to storage at the temperatures of 2- 5°C for 7 days. This study used meat from Longissimus dorsi muscle of male Balinese cattle aged 3 years and of male buffalo aged 5 years as the main raw materials, and smoke powder as a binder and preservative in making meatballs. The study was based on completely randomized design (CRD) of factorial pattern of 2 x 3 x 2 where factors 1, 2 and 3 included the types of meat (cattle and buffalo), types of smoke powder (oven dried, freeze dried and spray dried) with a level of 2% of the weight of the meat (w/w), and storage duration (0 and 7 days) with three replications, respectively. The parameters measured were the meatball sensory quality (scores of tenderness, firmness, chewing residue, and intensity of flavor). The results of this study show that each type of meat has produced different sensory characteristics. The meatballs made from buffalo meat have higher tenderness and elasticity scores than the Balinese beef. Meanwhile, the buffalo meatballs have a lower residue mastication score than the Balinese beef. Each type of smoke powders has produced a relatively similar sensory quality of meatballs. It can be concluded that the smoke powder of 2% of the weight of the meat (w/w) could maintain the sensory quality of the meatballs for 7 days of storage.Keywords: Balinese beef meatballs, buffalo meatballs, sensory quality, smoke powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705308 Detection and Correction of Ectopic Beats for HRV Analysis Applying Discrete Wavelet Transforms
Authors: Desmond B. Keenan
Abstract:
The clinical usefulness of heart rate variability is limited to the range of Holter monitoring software available. These software algorithms require a normal sinus rhythm to accurately acquire heart rate variability (HRV) measures in the frequency domain. Premature ventricular contractions (PVC) or more commonly referred to as ectopic beats, frequent in heart failure, hinder this analysis and introduce ambiguity. This investigation demonstrates an algorithm to automatically detect ectopic beats by analyzing discrete wavelet transform coefficients. Two techniques for filtering and replacing the ectopic beats from the RR signal are compared. One technique applies wavelet hard thresholding techniques and another applies linear interpolation to replace ectopic cycles. The results demonstrate through simulation, and signals acquired from a 24hr ambulatory recorder, that these techniques can accurately detect PVC-s and remove the noise and leakage effects produced by ectopic cycles retaining smooth spectra with the minimum of error.Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, wavelets, ectopic beats, spectral analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069307 Dynamic Ultrasound Scatterer Simulation Model Using Field-II and FEM for Speckle Tracking
Authors: Aws Al-azawi, John Soraghan
Abstract:
There is a growing interest in the use of ultrasonic speckle tracking for biomedical image formation of tissue deformation. Speckle tracking is angle independent and has an ability to differentiate soft tissue into benign and malignant regions. In this paper a simulation model for dynamic ultrasound scatterer is presented. The model composes Field-II ultrasonic scatterers and FEM (ANSYS-11) nodes as a regional tissue deformation. A performance evaluation is presented on axial displacement and strain fields estimation of a uniformly elastic model, using speckle tracking based 1D cross-correlation of optimally segmented pre and post-deformation frames. Optimum correlation window length is investigated in terms of highest signal-to-noise ratio (SNR) for a selected region of interest of a smoothed displacement field. Finally, gradient based strain field of both smoothed and non-smoothed displacement fields are compared. Simulation results from the model are shown to compare favorably with FEM results.
Keywords: Speckle tracking, tissue deformation, ultrasonic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3060306 Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems
Authors: Liping Zhou, Liang Bao, Yiqin Lin, Yimin Wei, Qinghua Wu
Abstract:
This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.Keywords: Quadratic eigenvalue problem, Generalized secondorder Krylov subspace, Generalized second-order Arnoldi process, Projection technique, Refined technique, Restarting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867305 Statistical (Radio) Path Loss Modelling: For RF Propagations within localized Indoor and Outdoor Environments of the Academic Building of INTI University College (Laureate International Universities)
Authors: Emmanuel O.O. Ojakominor, Tian F. Lai
Abstract:
A handful of propagation textbooks that discuss radio frequency (RF) propagation models merely list out the models and perhaps discuss them rather briefly; this may well be frustrating for the potential first time modeller who's got no idea on how these models could have been derived. This paper fundamentally provides an overture in modelling the radio channel. Explicitly, for the modelling practice discussed here, signal strength field measurements had to be conducted beforehand (this was done at 469 MHz); to be precise, this paper primarily concerns empirically/statistically modelling the radio channel, and thus provides results obtained from empirically modelling the environments in question. This paper, on the whole, proposes three propagation models, corresponding to three experimented environments. Perceptibly, the models have been derived by way of making the most use of statistical measures. Generally speaking, the first two models were derived via simple linear regression analysis, whereas the third have been originated using multiple regression analysis (with five various predictors). Additionally, as implied by the title of this paper, both indoor and outdoor environments have been experimented; however, (somewhat) two of the environments are neither entirely indoor nor entirely outdoor. The other environment, however, is completely indoor.
Keywords: RF propagation, radio channel modelling, statistical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433304 Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications
Authors: R. Senthilkumar
Abstract:
Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level.Keywords: BiShrink, Image-Denoising, PSNR, Shrinkage function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347303 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode
Authors: N. Ouldcherchali, M. S. Boucherit, L. Barazane, A. Morsli
Abstract:
In this study, we proposed two techniques to track the maximum power point (MPPT) of a photovoltaic system. The first is an intelligent control technique, and the second is robust used for variable structure system. In fact the characteristics I-V and P–V of the photovoltaic generator depends on the solar irradiance and temperature. These climate changes cause the fluctuation of maximum power point; a maximum power point tracking technique (MPPT) is required to maximize the output power. For this we have adopted a control by fuzzy logic (FLC) famous for its stability and robustness. And a Siding Mode Control (SMC) widely used for variable structure system. The system comprises a photovoltaic panel (PV), a DC-DC converter, which is considered as an adaptation stage between the PV and the load. The modelling and simulation of the system is developed using MATLAB/Simulink. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or it is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.Keywords: Fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104302 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.
Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064301 Capacitive ECG Measurement by Conductive Fabric Tape
Authors: Yue-Der Lin, Ya-Hsueh Chien, Yen-Ting Lin, Shih-Fan Wang, Cheng-Lun Tsai, Ching-Che Tsai
Abstract:
Capacitive electrocardiogram (ECG) measurement is an attractive approach for long-term health monitoring. However, there is little literature available on its implementation, especially for multichannel system in standard ECG leads. This paper begins from the design criteria for capacitive ECG measurement and presents a multichannel limb-lead capacitive ECG system with conductive fabric tapes pasted on a double layer PCB as the capacitive sensors. The proposed prototype system incorporates a capacitive driven-body (CDB) circuit to reduce the common-mode power-line interference (PLI). The presented prototype system has been verified to be stable by theoretic analysis and practical long-term experiments. The signal quality is competitive to that acquired by commercial ECG machines. The feasible size and distance of capacitive sensor have also been evaluated by a series of tests. From the test results, it is suggested to be greater than 60 cm2 in sensor size and be smaller than 1.5 mm in distance for capacitive ECG measurement.
Keywords: capacitive driven-body (CDB) circuit, capacitive electrocardiogram (ECG) measurement, capacitive sensor, conductive fabric tape, power-line interference (PLI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3130300 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053299 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: Augmented reality framework, server-client model, vision-based tracking, image search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140298 Three Phase Fault Analysis of DC-Link Rectifier using new Power Differential Protection Concept
Abstract:
The concept of differential protection based on current quantities has been discussed in many paper and researches. For certificating and inverting of currents and voltages through converter systems, there is no conventional current differential relay, which can compare current quantities, because they are different in form and frequencies. An overview over a new concept of differential protection for converters based on instantaneous power quantities will be discussed in this paper. To drive the power quantities a mathematical background of the space vectors will be introduced. A simple DCLink is preceded in this paper and a power analysis description and simulation is derived using Matlab®/ SimulinkTM concerning a certain construction scheme of Power Differential Relay System. Finally a complete analysis of three phase fault in DC-Link Rectifier is discussed to ensure the ability of Power Differential Protection System to detect the fault in main and selectivity protection sections.
Keywords: Space Vectors, Power Differential Relay (PDR), Short Circuit Power, Diode Recovery Energy, Detected Power Differential Signal (DPDS), Power Space Vector (PSV), Power Space Vector Protection Area (PSVPA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3388297 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.
Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874296 Swarmed Discriminant Analysis for Multifunction Prosthesis Control
Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily
Abstract:
One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556295 Robust Statistics Based Algorithm to Remove Salt and Pepper Noise in Images
Authors: V.R.Vijaykumar, P.T.Vanathi, P.Kanagasabapathy, D.Ebenezer
Abstract:
In this paper, a robust statistics based filter to remove salt and pepper noise in digital images is presented. The function of the algorithm is to detect the corrupted pixels first since the impulse noise only affect certain pixels in the image and the remaining pixels are uncorrupted. The corrupted pixels are replaced by an estimated value using the proposed robust statistics based filter. The proposed method perform well in removing low to medium density impulse noise with detail preservation upto a noise density of 70% compared to standard median filter, weighted median filter, recursive weighted median filter, progressive switching median filter, signal dependent rank ordered mean filter, adaptive median filter and recently proposed decision based algorithm. The visual and quantitative results show the proposed algorithm outperforms in restoring the original image with superior preservation of edges and better suppression of impulse noise
Keywords: Image denoising, Nonlinear filter, Robust Statistics, and Salt and Pepper Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202294 Numerical Investigation of Delamination in Carbon-Epoxy Composite using Arcan Specimen
Authors: M. Nikbakht, N. Choupani
Abstract:
In this paper delamination phenomenon in Carbon-Epoxy laminated composite material is investigated numerically. Arcan apparatus and specimen is modeled in ABAQUS finite element software for different loading conditions and crack geometries. The influence of variation of crack geometry on interlaminar fracture stress intensity factor and energy release rate for various mixed mode ratios and pure mode I and II was studied. Also, correction factors for this specimen for different crack length ratios were calculated. The finite element results indicate that for loading angles close to pure mode-II loading, a high ratio of mode-II to mode-I fracture is dominant and there is an opposite trend for loading angles close to pure mode-I loading. It confirms that by varying the loading angle of Arcan specimen pure mode-I, pure mode-II and a wide range of mixed-mode loading conditions can be created and tested. Also, numerical results confirm that the increase of the mode- II loading contribution leads to an increase of fracture resistance in the CF/PEI composite (i.e., a reduction in the total strain energy release rate) and the increase of the crack length leads to a reduction of interlaminar fracture resistance in the CF/PEI composite (i.e., an increase in the total interlaminar strain energy release rate).Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909293 Determining of Threshold Levels of Burst by Burst AQAM/CDMA in Slow Rayleigh Fading Environments
Authors: F. Nejadebrahimi, M. ArdebiliPour
Abstract:
In this paper, we are going to determine the threshold levels of adaptive modulation in a burst by burst CDMA system by a suboptimum method so that the above method attempts to increase the average bit per symbol (BPS) rate of transceiver system by switching between the different modulation modes in variable channel condition. In this method, we choose the minimum values of average bit error rate (BER) and maximum values of average BPS on different values of average channel signal to noise ratio (SNR) and then calculate the relative threshold levels of them, so that when the instantaneous SNR increases, a higher order modulation be employed for increasing throughput and vise-versa when the instantaneous SNR decreases, a lower order modulation be employed for improvement of BER. In transmission step, by this adaptive modulation method, in according to comparison between obtained estimation of pilot symbols and a set of above suboptimum threshold levels, above system chooses one of states no transmission, BPSK, 4QAM and square 16QAM for modulation of data. The expected channel in this paper is a slow Rayleigh fading.
Keywords: AQAM, burst, BER, BPS, CDMA, threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533292 Quality Estimation of Video Transmitted overan Additive WGN Channel based on Digital Watermarking and Wavelet Transform
Authors: Mohamed S. El-Mahallawy, Attalah Hashad, Hazem Hassan Ali, Heba Sami Zaky
Abstract:
This paper presents an evaluation for a wavelet-based digital watermarking technique used in estimating the quality of video sequences transmitted over Additive White Gaussian Noise (AWGN) channel in terms of a classical objective metric, such as Peak Signal-to-Noise Ratio (PSNR) without the need of the original video. In this method, a watermark is embedded into the Discrete Wavelet Transform (DWT) domain of the original video frames using a quantization method. The degradation of the extracted watermark can be used to estimate the video quality in terms of PSNR with good accuracy. We calculated PSNR for video frames contaminated with AWGN and compared the values with those estimated using the Watermarking-DWT based approach. It is found that the calculated and estimated quality measures of the video frames are highly correlated, suggesting that this method can provide a good quality measure for video frames transmitted over AWGN channel without the need of the original video.Keywords: AWGN, DWT, PSNR, Watermarking, VideoQuality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836291 Level Shifted Carrier Signal Based Scalar Random Pulse Width Modulation Algorithms for Cascaded Multilevel Inverter Fed Induction Motor Drive
Authors: M. Nayeemuddin, T. Bramhananda Reddy, M. Vijaya Kumar
Abstract:
Acoustic noise becoming ever more obnoxious radiated by voltage source inverter fed induction motor drive in modern and industrial applications. The drive utilized for industrial and modern applications should use “spread spectrum” innovation known as Random pulse width modulation (PWM) algorithms where acoustic noise emanates through the machine should be critically concerned. This paper illustrates three types of random PWM control algorithms with fixed switching frequency namely 1) Random modulating PWM 2) Random carrier PWM and 3) Random modulating-carrier PWM. The spectrum plots of the motor stator current demonstrate the strength and robustness of the proposed PWM algorithms. To affirm the proposed algorithms, experimental tests have been conducted using dSPACE rt1104 control board on a v/f control three phase induction motor drive fed by DC link cascaded multilevel inverter.
Keywords: Multilevel inverter, acoustic noise, CSVPWM, total harmonic distortion, random PWM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661290 A Differential Calculus Based Image Steganography with Crossover
Authors: Srilekha Mukherjee, Subha Ash, Goutam Sanyal
Abstract:
Information security plays a major role in uplifting the standard of secured communications via global media. In this paper, we have suggested a technique of encryption followed by insertion before transmission. Here, we have implemented two different concepts to carry out the above-specified tasks. We have used a two-point crossover technique of the genetic algorithm to facilitate the encryption process. For each of the uniquely identified rows of pixels, different mathematical methodologies are applied for several conditions checking, in order to figure out all the parent pixels on which we perform the crossover operation. This is done by selecting two crossover points within the pixels thereby producing the newly encrypted child pixels, and hence the encrypted cover image. In the next lap, the first and second order derivative operators are evaluated to increase the security and robustness. The last lap further ensures reapplication of the crossover procedure to form the final stego-image. The complexity of this system as a whole is huge, thereby dissuading the third party interferences. Also, the embedding capacity is very high. Therefore, a larger amount of secret image information can be hidden. The imperceptible vision of the obtained stego-image clearly proves the proficiency of this approach.Keywords: Steganography, Crossover, Differential Calculus, Peak Signal to Noise Ratio, Cross-correlation Coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394