Search results for: Gaussian Mixture Models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3177

Search results for: Gaussian Mixture Models

1857 Mathematical Modeling of Uncompetitive Inhibition of Bi-Substrate Enzymatic Reactions

Authors: Rafayel A. Azizyan, Aram E. Gevorgyan, Valeri B. Arakelyan, Emil S. Gevorgyan

Abstract:

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such a complex systems as a biological are. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides, it has been shown that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction. 

Keywords: Mathematical modeling, bi-substrate enzymatic reactions, sequential mechanism, ping-pong mechanism, uncompetitive inhibition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3566
1856 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
1855 Biodiversity of Plants Rhizosphere and Rhizoplane Bacteria in the Presence of Petroleum Hydrocarbons

Authors: Togzhan D. Mukasheva, Anel A. Omirbekova, Raikhan S. Sydykbekova, Ramza Zh. Berzhanova, Lyudmila V. Ignatova

Abstract:

Following plants-barley (Hordeum sativum), alfalfa (Medicago sativa), grass mixture (red fescue-75%, long-term ryegrass - 20% Kentucky bluegrass - 10%), oilseed rape (Brassica napus biennis), resistant to growth in the contaminated soil with oil content of 15.8 g / kg 25.9 g / kg soil were used. Analysis of the population showed that the oil pollution reduces the number of bacteria in the rhizosphere and rhizoplane of plants and enhances the amount of spore-forming bacteria and saprotrophic micromycetes. It was shown that regardless of the plant, dominance of Pseudomonas and Bacillus genera bacteria was typical for the rhizosphere and rhizoplane of plants. The frequency of bacteria of these genera was more than 60%. Oil pollution changes the ratio of occurrence of various types of bacteria in the rhizosphere and rhizoplane of plants. Besides the Pseudomonas and Bacillus genera, in the presence of hydrocarbons in the root zone of plants dominant and most typical were the representatives of the Mycobacterium and Rhodococcus genera. Together the number was between 62% to 72%.

Keywords: Identification, micromycetes, pollution, root system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
1854 Prediction of Watermelon Consumer Acceptability based on Vibration Response Spectrum

Authors: R.Abbaszadeh, A.Rajabipour, M.Delshad, M.J.Mahjub, H.Ahmadi

Abstract:

It is difficult to judge ripeness by outward characteristics such as size or external color. In this paper a nondestructive method was studied to determine watermelon (Crimson Sweet) quality. Responses of samples to excitation vibrations were detected using laser Doppler vibrometry (LDV) technology. Phase shift between input and output vibrations were extracted overall frequency range. First and second were derived using frequency response spectrums. After nondestructive tests, watermelons were sensory evaluated. So the samples were graded in a range of ripeness based on overall acceptability (total desired traits consumers). Regression models were developed to predict quality using obtained results and sample mass. The determination coefficients of the calibration and cross validation models were 0.89 and 0.71 respectively. This study demonstrated feasibility of information which is derived vibration response curves for predicting fruit quality. The vibration response of watermelon using the LDV method is measured without direct contact; it is accurate and timely, which could result in significant advantage for classifying watermelons based on consumer opinions.

Keywords: Laser Doppler vibrometry, Phase shift, Overallacceptability, Regression model , Resonance frequency, Watermelon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713
1853 Lubricating Grease from Waste Cooking Oil and Waste Motor Sludge

Authors: Aseem Rajvanshi, Pankaj Kumar Pandey

Abstract:

Increase in population has increased the demand of energy to fulfill all its needs. This will result in burden on fossil fuels especially crude oil. Waste oil due to its disposal problem creates environmental degradation. In this context, this paper studies utilization of waste cooking oil and waste motor sludge for making lubricating grease. Experimental studies have been performed by variation in time and concentration of mixture of waste cooking oil and waste motor sludge. The samples were analyzed using penetration test (ASTM D-217), dropping point (ASTM D-566), work penetration (ASTM D-217) and copper strip test (ASTM D-408). Among 6 samples, sample 6 gives the best results with a good drop point and a fine penetration value. The dropping point and penetration test values were found to be 205 °C and 315, respectively. The penetration value falls under the category of NLGI (National Lubricating Grease Institute) consistency number 1.

Keywords: Crude oil, copper strip corrosion test, dropping point, penetration test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
1852 Neural Networks-Based Acoustic Annoyance Model for Laptop Hard Disk Drive

Authors: Yi Chao Ma, Cheng Siong Chin, Wai Lok Woo

Abstract:

Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and threedimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who are the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system, which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.

Keywords: Hard disk drive noise, jury test, neural network model, psychoacoustic annoyance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
1851 One-Dimensional Numerical Investigation of a Cylindrical Micro-Combustor Applying Electrohydrodynamics Effect

Authors: Behrouzinia P., Irani R. A., Saidi M.H.

Abstract:

In this paper, a one-dimensional numerical approach is used to study the effect of applying electrohydrodynamics on the temperature and species mass fraction profiles along the microcombustor. Premixed mixture is H2-Air with a multi-step chemistry (9 species and 19 reactions). In the micro-scale combustion because of the increasing ratio of area-to-volume, thermal and radical quenching mechanisms are important. Also, there is a significant heat loss from the combustor walls. By inserting a number of electrodes into micro-combustor and applying high voltage to them corona discharge occurs. This leads in moving of induced ions toward natural molecules and colliding with them. So this phenomenon causes the movement of the molecules and reattaches the flow to the walls. It increases the velocity near the walls that reduces the wall boundary layer. Consequently, applying electrohydrodynamics mechanism can enhance the temperature profile in the microcombustor. Ultimately, it prevents the flame quenching in microcombustor.

Keywords: micro-combustor, electrohydrodynamics, temperature profile, wall quenching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
1850 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
1849 Oil Palm Shell Ash - Cement Mortar Mixture and Modification of Mechanical Properties

Authors: Abdoullah Namdar, Fadzil Mat Yahaya

Abstract:

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated.

Keywords: Minerals, additive, flexural strength, compressive strength, modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
1848 Application of Stochastic Models to Annual Extreme Streamflow Data

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.

Keywords: Stochastic models, ARIMA, extreme streamflow, Karkheh River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
1847 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market

Authors: Cristian Păuna

Abstract:

In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.

Keywords: Algorithmic trading, automated investment system, DAX Deutscher Aktienindex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
1846 Modelling Sudoku Puzzles as Block-world Problems

Authors: Cecilia Nugraheni, Luciana Abednego

Abstract:

Sudoku is a kind of logic puzzles. Each puzzle consists of a board, which is a 9×9 cells, divided into nine 3×3 subblocks and a set of numbers from 1 to 9. The aim of this puzzle is to fill in every cell of the board with a number from 1 to 9 such that in every row, every column, and every subblock contains each number exactly one. Sudoku puzzles belong to combinatorial problem (NP complete). Sudoku puzzles can be solved by using a variety of techniques/algorithms such as genetic algorithms, heuristics, integer programming, and so on. In this paper, we propose a new approach for solving Sudoku which is by modelling them as block-world problems. In block-world problems, there are a number of boxes on the table with a particular order or arrangement. The objective of this problem is to change this arrangement into the targeted arrangement with the help of two types of robots. In this paper, we present three models for Sudoku. We modellized Sudoku as parameterized multi-agent systems. A parameterized multi-agent system is a multi-agent system which consists of several uniform/similar agents and the number of the agents in the system is stated as the parameter of this system. We use Temporal Logic of Actions (TLA) for formalizing our models.

Keywords: Sudoku puzzle, block world problem, parameterized multi agent systems modelling, Temporal Logic of Actions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
1845 Reducing Variation of Dyeing Process in Textile Manufacturing Industry

Authors: M. Zeydan, G. Toğa

Abstract:

This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.

Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3555
1844 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with fillervolume- based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: Thermal Stability, Silica-Reinforced, Epoxy Composite, Coefficient of Thermal Expansion, Empirical Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4829
1843 Effect of Hormonal Manipulations on the Pattern of the Vaginal Tissue Structure

Authors: Fatahian Dehkordi RF., Parchami A.

Abstract:

Design of experiments made for correlated the hormonal activity of steroids and their effect on the vaginal structure properties. Vaginal wall consists of distinct layers of cells which strongly differ regarding growth in answer to steroid hormones. The presence study carried out for functional evaluation and sustained replacement effect of the reproductive hormones on the vaginal morphometry in the rabbit. Rabbits were maintained control (Co) or ovariectomized (Ovz) and continuously treated with estradiol (Ovz E) and estradiol mixture with testosterone (Ovz ET). Relative to control rabbits with the distinct tissue distribution pattern, ovariectomized animals displayed declined epithelial thickness and atrophy of the muscularis layer that cause the vaginal wall thinning. Estradiol treatment of Orz rabbits inverted these changes to status of the preovariectomy. Histometric measurements in Ovz ET group completely including of thickness of the epithelial and muscular layers was greater in comparison to that of control animals.

Keywords: Vagina, Ovariectomy, Rabbit, Morphometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
1842 Dynamic Variational Multiscale LES of Bluff Body Flows on Unstructured Grids

Authors: Carine Moussaed, Stephen Wornom, Bruno Koobus, Maria Vittoria Salvetti, Alain Dervieux,

Abstract:

The effects of dynamic subgrid scale (SGS) models are investigated in variational multiscale (VMS) LES simulations of bluff body flows. The spatial discretization is based on a mixed finite element/finite volume formulation on unstructured grids. In the VMS approach used in this work, the separation between the largest and the smallest resolved scales is obtained through a variational projection operator and a finite volume cell agglomeration. The dynamic version of Smagorinsky and WALE SGS models are used to account for the effects of the unresolved scales. In the VMS approach, these effects are only modeled in the smallest resolved scales. The dynamic VMS-LES approach is applied to the simulation of the flow around a circular cylinder at Reynolds numbers 3900 and 20000 and to the flow around a square cylinder at Reynolds numbers 22000 and 175000. It is observed as in previous studies that the dynamic SGS procedure has a smaller impact on the results within the VMS approach than in LES. But improvements are demonstrated for important feature like recirculating part of the flow. The global prediction is improved for a small computational extra cost.

Keywords: variational multiscale LES, dynamic SGS model, unstructured grids, circular cylinder, square cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
1841 An Attempt to Predict the Performances of a Rocket Thrust Chamber

Authors: A. Benarous, D. Karmed, R. Haoui, A. Liazid

Abstract:

The process for predicting the ballistic properties of a liquid rocket engine is based on the quantitative estimation of idealized performance deviations. In this aim, an equilibrium chemistry procedure is firstly developed and implemented in a Fortran routine. The thermodynamic formulation allows for the calculation of the theoretical performances of a rocket thrust chamber. In a second step, a computational fluid dynamic analysis of the turbulent reactive flow within the chamber is performed using a finite volume approach. The obtained values for the “quasi-real" performances account for both turbulent mixing and chemistryturbulence coupling. In the present work, emphasis is made on the combustion efficiency performance for which deviation is mainly due to radial gradients of static temperature and mixture ratio. Numerical values of the characteristic velocity are successfully compared with results from an industry-used code. The results are also confronted with the experimental data of a laboratory-scale rocket engine.

Keywords: JANAF methodology, Liquid rocket engine, Mascotte test-rig, Theoretical performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
1840 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies

Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong

Abstract:

To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.

Keywords: Travel characteristics analysis, transportation choice, travel sharing rate, neural network model, traffic resource allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
1839 Phenomenological Ductile Fracture Criteria Applied to the Cutting Process

Authors: František Šebek, Petr Kubík, Jindřich Petruška, Jiří Hůlka

Abstract:

Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.

Keywords: Ductile fracture, phenomenological criteria, cutting process, explicit formulation, AISI 1045 steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
1838 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: credit card fraud detection, user authentication, behavioral biometrics, machine learning, literature survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
1837 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: EIoT, machine learning, anomaly detection, environment monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
1836 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor

Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji

Abstract:

The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.

Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
1835 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: Crime prediction, machine learning, public safety, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
1834 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
1833 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window

Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi

Abstract:

In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.

Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3116
1832 Re-Examination of Louis Pasteur’s S-Shaped Flask Experiment

Authors: Ming-Hua Fu

Abstract:

No negative control nor control to prevent microbes from escaping was set when the S-shaped flask experiments were performed by Pasteur. Microscope was not used to observe the media in the flasks. Louis Pasteur’s S-shaped flask experiment was re-examined by using U-shaped flasks, modified S-shaped flasks and microscope. A mixture of microbes was isolated from the room air, from which one rod-shaped Bacillus species with proposed name Bacillus gaso-mobilis sp nov and one grape-shaped Staphylococcus species with proposed name of Staphylococcus gaso-mobilis sp nov were identified. Their penicillin and ampicillin resistant strains containing plasmids were isolated. These bacteria could change color, produce odor and automatically move in the air. They did not form colonies on solid media. They had a high suspension capacity in liquid media. Their light absorbance peaked at the wave length of 320 nm.  It was concluded that there were flaws with Louis Pasteur’s S-shaped flask experiments. 

Keywords: Bacteria, gaso-mobile, re-examine, S-shaped flasks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
1831 QSAR Studies of Certain Novel Heterocycles Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor Agents

Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract:

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

Keywords: 3D QSAR, CoMSIA, Triazoles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1830 Disaggregation the Daily Rainfall Dataset into Sub-Daily Resolution in the Temperate Oceanic Climate Region

Authors: Mohammad Bakhshi, Firas Al Janabi

Abstract:

High resolution rain data are very important to fulfill the input of hydrological models. Among models of high-resolution rainfall data generation, the temporal disaggregation was chosen for this study. The paper attempts to generate three different rainfall resolutions (4-hourly, hourly and 10-minutes) from daily for around 20-year record period. The process was done by DiMoN tool which is based on random cascade model and method of fragment. Differences between observed and simulated rain dataset are evaluated with variety of statistical and empirical methods: Kolmogorov-Smirnov test (K-S), usual statistics, and Exceedance probability. The tool worked well at preserving the daily rainfall values in wet days, however, the generated data are cumulated in a shorter time period and made stronger storms. It is demonstrated that the difference between generated and observed cumulative distribution function curve of 4-hourly datasets is passed the K-S test criteria while in hourly and 10-minutes datasets the P-value should be employed to prove that their differences were reasonable. The results are encouraging considering the overestimation of generated high-resolution rainfall data.

Keywords: DiMoN tool, disaggregation, exceedance probability, Kolmogorov-Smirnov Test, rainfall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
1829 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1828 Simultaneous HPAM/SDS Injection in Heterogeneous/Layered Models

Authors: M. H. Sedaghat, A. Zamani, S. Morshedi, R. Janamiri, M. Safdari, I. Mahdavi, A. Hosseini, A. Hatampour

Abstract:

Although lots of experiments have been done in enhanced oil recovery, the number of experiments which consider the effects of local and global heterogeneity on efficiency of enhanced oil recovery based on the polymer-surfactant flooding is low and rarely done. In this research, we have done numerous experiments of water flooding and polymer-surfactant flooding on a five spot glass micromodel in different conditions such as different positions of layers. In these experiments, five different micromodels with three different pore structures are designed. Three models with different layer orientation, one homogenous model and one heterogeneous model are designed. In order to import the effect of heterogeneity of porous media, three types of pore structures are distributed accidentally and with equal ratio throughout heterogeneous micromodel network according to random normal distribution. The results show that maximum EOR recovery factor will happen in a situation where the layers are orthogonal to the path of mainstream and the minimum EOR recovery factor will happen in a situation where the model is heterogeneous. This experiments show that in polymer-surfactant flooding, with increase of angles of layers the EOR recovery factor will increase and this recovery factor is strongly affected by local heterogeneity around the injection zone.

Keywords: Layered Reservoir, Micromodel, Local Heterogeneity, Polymer-Surfactant Flooding, Enhanced Oil Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219