Search results for: new generation networks
1670 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso
Abstract:
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.
Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16191669 Real Time Approach for Data Placement in Wireless Sensor Networks
Authors: Sanjeev Gupta, Mayank Dave
Abstract:
The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.
Keywords: Cluster head, data reliability, real time communication, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18181668 Networking the Biggest Challenge in Hybrid Cloud Deployment
Authors: Aishwarya Shekhar, Devesh Kumar Srivastava
Abstract:
Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.Keywords: Cloud computing, networking, infrastructure, hybrid cloud, open stack, Naas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23241667 A Robust Adaptive Congestion Control Strategy for Large Scale Networks with Differentiated Services Traffic
Authors: R. R. Chen, K. Khorasani
Abstract:
In this paper, a robust decentralized congestion control strategy is developed for a large scale network with Differentiated Services (Diff-Serv) traffic. The network is modeled by a nonlinear fluid flow model corresponding to two classes of traffic, namely the premium traffic and the ordinary traffic. The proposed congestion controller does take into account the associated physical network resource limitations and is shown to be robust to the unknown and time-varying delays. Our proposed decentralized congestion control strategy is developed on the basis of Diff-Serv architecture by utilizing a robust adaptive technique. A Linear Matrix Inequality (LMI) condition is obtained to guarantee the ultimate boundedness of the closed-loop system. Numerical simulation implementations are presented by utilizing the QualNet and Matlab software tools to illustrate the effectiveness and capabilities of our proposed decentralized congestion control strategy.
Keywords: Congestion control, Large scale networks, Decentralized control, Differentiated services traffic, Time-delay systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19951666 Estimation of Vertical Handover Probability in an Integrated UMTS and WLAN Networks
Authors: Diganta Kumar Pathak, Manashjyoti Bhuyan, Vaskar Deka
Abstract:
Vertical Handover(VHO) among different communication technologies ensuring uninterruption and service continuity is one of the most important performance parameter in Heterogenous networks environment. In an integrated Universal Mobile Telecommunicatin System(UMTS) and Wireless Local Area Network(WLAN), WLAN is given an inherent priority over UMTS because of its high data rates with low cost. Therefore mobile users want to be associated with WLAN maximum of the time while roaming, to enjoy best possible services with low cost. That encourages reduction of number of VHO. In this work the reduction of number of VHO with respect to varying number of WLAN Access Points(APs) in an integrated UMTS and WLAN network is investigated through simulation to provide best possible cost effective service to the users. The simulation has been carried out for an area (7800 × 9006)m2 where COST-231 Hata model and 3GPP (TR 101 112 V 3.1.0) specified models are used for WLAN and UMTS path loss models respectively. The handover decision is triggered based on the received signal level as compared to the fade margin. Fade margin gives a probabilistic measure of the reliability of the communication link. A relationship between number of WLAN APs and the number of VHO is also established in this work.
Keywords: VHO, UMTS, WLAN, MT, AP, BS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20401665 Effective Defect Prevention Approach in Software Process for Achieving Better Quality Levels
Authors: Suma. V., T. R. Gopalakrishnan Nair
Abstract:
Defect prevention is the most vital but habitually neglected facet of software quality assurance in any project. If functional at all stages of software development, it can condense the time, overheads and wherewithal entailed to engineer a high quality product. The key challenge of an IT industry is to engineer a software product with minimum post deployment defects. This effort is an analysis based on data obtained for five selected projects from leading software companies of varying software production competence. The main aim of this paper is to provide information on various methods and practices supporting defect detection and prevention leading to thriving software generation. The defect prevention technique unearths 99% of defects. Inspection is found to be an essential technique in generating ideal software generation in factories through enhanced methodologies of abetted and unaided inspection schedules. On an average 13 % to 15% of inspection and 25% - 30% of testing out of whole project effort time is required for 99% - 99.75% of defect elimination. A comparison of the end results for the five selected projects between the companies is also brought about throwing light on the possibility of a particular company to position itself with an appropriate complementary ratio of inspection testing.Keywords: Defect Detection and Prevention, Inspections, Software Engineering, Software Process, Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15431664 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 581663 Capacity Optimization for Local and Cooperative Spectrum Sensing in Cognitive Radio Networks
Authors: Ayman A. El-Saleh, Mahamod Ismail, Mohd. A. M. Ali, Ahmed N. H. Alnuaimy
Abstract:
The dynamic spectrum allocation solutions such as cognitive radio networks have been proposed as a key technology to exploit the frequency segments that are spectrally underutilized. Cognitive radio users work as secondary users who need to constantly and rapidly sense the presence of primary users or licensees to utilize their frequency bands if they are inactive. Short sensing cycles should be run by the secondary users to achieve higher throughput rates as well as to provide low level of interference to the primary users by immediately vacating their channels once they have been detected. In this paper, the throughput-sensing time relationship in local and cooperative spectrum sensing has been investigated under two distinct scenarios, namely, constant primary user protection (CPUP) and constant secondary user spectrum usability (CSUSU) scenarios. The simulation results show that the design of sensing slot duration is very critical and depends on the number of cooperating users under CPUP scenario whereas under CSUSU, cooperating more users has no effect if the sensing time used exceeds 5% of the total frame duration.Keywords: Capacity, cognitive radio, optimization, spectrumsensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16201662 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks
Authors: Jiajun Wang, Xiaoge Li
Abstract:
The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose an aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.
Keywords: Aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5191661 The Role of Knowledge Management in Innovation: Spanish Evidence
Authors: María Jesús Luengo-Valderrey, Mónica Moso-Díez
Abstract:
In the knowledge-based economy, innovation is considered essential in order to achieve survival and growth in organizations. On the other hand, knowledge management is currently understood as one of the keys to innovation process. Both factors are generally admitted as generators of competitive advantage in organizations. Specifically, activities on R&D&I and those that generate internal knowledge have a positive influence in innovation results. This paper examines this effect and if it is similar or not is what we aimed to quantify in this paper. We focus on the impact that proportion of knowledge workers, the R&D&I investment, the amounts destined for ICTs and training for innovation have on the variation of tangible and intangibles returns for the sector of high and medium technology in Spain. To do this, we have performed an empirical analysis on the results of questionnaires about innovation in enterprises in Spain, collected by the National Statistics Institute. First, using clusters methodology, the behavior of these enterprises regarding knowledge management is identified. Then, using SEM methodology, we performed, for each cluster, the study about cause-effect relationships among constructs defined through variables, setting its type and quantification. The cluster analysis results in four groups in which cluster number 1 and 3 presents the best performance in innovation with differentiating nuances among them, while clusters 2 and 4 obtained divergent results to a similar innovative effort. However, the results of SEM analysis for each cluster show that, in all cases, knowledge workers are those that affect innovation performance most, regardless of the level of investment, and that there is a strong correlation between knowledge workers and investment in knowledge generation. The main findings reached is that Spanish high and medium technology companies improve their innovation performance investing in internal knowledge generation measures, specially, in terms of R&D activities, and underinvest in external ones. This, and the strong correlation between knowledge workers and the set of activities that promote the knowledge generation, should be taken into account by managers of companies, when making decisions about their investments for innovation, since they are key for improving their opportunities in the global market.
Keywords: High and medium technology sector, innovation, knowledge management, Spanish companies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22021660 An Efficient Burst Errors Combating for Image Transmission over Mobile WPANs
Authors: Mohsen A. M. El-Bendary, Mostafa A. R. El-Tokhy
Abstract:
This paper presents an efficient burst error spreading tool. Also, it studies a vital issue in wireless communications, which is the transmission of images over wireless networks. IEEE ZigBee 802.15.4 is a short-range communication standard that could be used for small distance multimedia transmissions. In fact, the ZigBee network is a Wireless Personal Area Network (WPAN), which needs a strong interleaving mechanism for protection against error bursts. Also, it is low power technology and utilized in the Wireless Sensor Networks (WSN) implementation. This paper presents the chaotic interleaving scheme as a data randomization tool for this purpose. This scheme depends on the chaotic Baker map. The mobility effects on the image transmission are studied with different velocity through utilizing the Jakes’ model. A comparison study between the proposed chaotic interleaving scheme and the traditional block and convolutional interleaving schemes for image transmission over a correlated fading channel is presented. The simulation results show the superiority of the proposed chaotic interleaving scheme over the traditional schemes.
Keywords: WPANs, Burst Errors, Mobility, Interleaving Techniques, Fading channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20401659 Determination of the Optimal DG PV Interconnection Location Using Losses and Voltage Regulation as Assessment Indicators Case Study: ECG 33 kV Sub-Transmission Network
Authors: Ekow A. Kwofie, Emmanuel K. Anto, Godfred Mensah
Abstract:
In this paper, CYME Distribution software has been used to assess the impacts of solar Photovoltaic (PV) distributed generation (DG) plant on the Electricity Company of Ghana (ECG) 33 kV sub-transmission network at different PV penetration levels. As ECG begins to encourage DG PV interconnections within its network, there has been the need to assess the impacts on the sub-transmission losses and voltage contribution. In Tema, a city in Accra - Ghana, ECG has a 33 kV sub-transmission network made up of 20 No. 33 kV buses that was modeled. Three different locations were chosen: The source bus, a bus along the sub-transmission radial network and a bus at the tail end to determine the optimal location for DG PV interconnection. The optimal location was determined based on sub-transmission technical losses and voltage impact. PV capacities at different penetration levels were modeled at each location and simulations performed to determine the optimal PV penetration level. Interconnection at a bus along (or in the middle of) the sub-transmission network offered the highest benefits at an optimal PV penetration level of 80%. At that location, the maximum voltage improvement of 0.789% on the neighboring 33 kV buses and maximum loss reduction of 6.033% over the base case scenario were recorded. Hence, the optimal location for DG PV integration within the 33 kV sub-transmission utility network is at a bus along the sub-transmission radial network.
Keywords: Distributed generation photovoltaic, DG PV, optimal location, penetration level, sub-transmission network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13271658 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.
Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6481657 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks
Authors: M. Zerikat, S. Chekroun
Abstract:
This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20331656 An Energy Aware Dispatch Scheme WSNs
Authors: Siddhartha Chauhan, Kumar S. Pandey, Prateek Chandra
Abstract:
One of the key research issues in wireless sensor networks (WSNs) is how to efficiently deploy sensors to cover an area. In this paper, we present a Fishnet Based Dispatch Scheme (FiBDS) with energy aware mobility and interest based sensing angle. We propose two algorithms, one is FiBDS centralized algorithm and another is FiBDS distributed algorithm. The centralized algorithm is designed specifically for the non-time critical applications, commonly known as non real-time applications while the distributed algorithm is designed specifically for the time critical applications, commonly known as real-time applications. The proposed dispatch scheme works in a phase-selection manner. In this in each phase a specific constraint is dealt with according to the specified priority and then moved onto the next phase and at the end of each only the best suited nodes for the phase are chosen. Simulation results are presented to verify their effectiveness.
Keywords: Dispatch Scheme, Energy Aware Mobility, Interest based Sensing, Wireless Sensor Networks (WSNs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331655 A Safety Analysis Method for Multi-Agent Systems
Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller
Abstract:
Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.Keywords: Multi-agent system, safety analysis, safety model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10901654 Photodetector Engineering with Plasmonic Properties
Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim
Abstract:
In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.Keywords: Nanoparticles, plasmonic, plasmon-plasmon interaction, plasmonic photodetector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6231653 A Mapping Approach of Code Generation for Arinc653-Based Avionics Software
Authors: Lu Zou, Dianfu MA, Ying Wang, Xianqi Zhao
Abstract:
Avionic software architecture has transit from a federated avionics architecture to an integrated modular avionics (IMA) .ARINC 653 (Avionics Application Standard Software Interface) is a software specification for space and time partitioning in Safety-critical avionics Real-time operating systems. Methods to transform the abstract avionics application logic function to the executable model have been brought up, however with less consideration about the code generating input and output model specific for ARINC 653 platform and inner-task synchronous dynamic interaction order sequence. In this paper, we proposed an AADL-based model-driven design methodology to fulfill the purpose to automatically generating Cµ executable model on ARINC 653 platform from the ARINC653 architecture which defined as AADL653 in order to facilitate the development of the avionics software constructed on ARINC653 OS. This paper presents the mapping rules between the AADL653 elements and the elements in Cµ language, and define the code generating rules , designs an automatic C µ code generator .Then, we use a case to illustrate our approach. Finally, we give the related work and future research directions.Keywords: IMA, ARINC653, AADL653, code generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30451652 Use of Smartphones in 6th and 7th Grade (Elementary Schools) in Istria: Pilot Study
Authors: Maja Ruzic-Baf, Vedrana Keteles, Andrea Debeljuh
Abstract:
Younger and younger children are now using a smartphone, a device which has become ‘a must have’ and the life of children would be almost ‘unthinkable’ without one. Devices are becoming lighter and lighter but offering an array of options and applications as well as the unavoidable access to the Internet, without which it would be almost unusable. Numerous features such as taking of photographs, listening to music, information search on the Internet, access to social networks, usage of some of the chatting and messaging services, are only some of the numerous features offered by ‘smart’ devices. They have replaced the alarm clock, home phone, camera, tablet and other devices. Their use and possession have become a part of the everyday image of young people. Apart from the positive aspects, the use of smartphones has also some downsides. For instance, free time was usually spent in nature, playing, doing sports or other activities enabling children an adequate psychophysiological growth and development. The greater usage of smartphones during classes to check statuses on social networks, message your friends, play online games, are just some of the possible negative aspects of their application. Considering that the age of the population using smartphones is decreasing and that smartphones are no longer ‘foreign’ to children of pre-school age (smartphones are used at home or in coffee shops or shopping centers while waiting for their parents, playing video games often inappropriate to their age), particular attention must be paid to a very sensitive group, the teenagers who almost never separate from their ‘pets’. This paper is divided into two sections, theoretical and empirical ones. The theoretical section gives an overview of the pros and cons of the usage of smartphones, while the empirical section presents the results of a research conducted in three elementary schools regarding the usage of smartphones and, specifically, their usage during classes, during breaks and to search information on the Internet, check status updates and 'likes’ on the Facebook social network.
Keywords: Education, smartphone, social networks, teenagers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15251651 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage
Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy
Abstract:
Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. A numerical dynamic model is developed to simulate troughs installed in cold climates and validated using a parabolic solar trough facility in Winnipeg. The model is developed in Simulink and will be utilized to simulate a trigeneration system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates and use the model to determine ways to improve the economics and address cold weather issues. In this paper the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using Organic Rankine Cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modelling provides dynamic performance results using measured meteorological data recorded every minute at the solar facility location. The purpose of this modeling approach is to accurately predict system performance at each time step considering the solar radiation fluctuations due to passing clouds. Optimization of the controller in cold temperatures is another goal of the simulation to for example minimize heat losses in winter when energy demand is high and solar resources are low. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. The results of the simulation are presented for a summer day in Winnipeg which includes comparison of performance parameters of the absorption cooling and ORC systems at different heat transfer fluid (HTF) temperatures.
Keywords: Absorption cooling, parabolic solar trough, remote community, organic Rankine cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31181650 Weighted Clustering Coefficient for Identifying Modular Formations in Protein-Protein Interaction Networks
Authors: Zelmina Lubovac, Björn Olsson, Jonas Gamalielsson
Abstract:
This paper describes a novel approach for deriving modules from protein-protein interaction networks, which combines functional information with topological properties of the network. This approach is based on weighted clustering coefficient, which uses weights representing the functional similarities between the proteins. These weights are calculated according to the semantic similarity between the proteins, which is based on their Gene Ontology terms. We recently proposed an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The rational underlying this approach is that each module can be reduced to a set of triangles (protein triplets connected to each other). Here, we propose considering semantic similarity weights of all triangle-forming edges between proteins. We also apply varying semantic similarity thresholds between neighbours of each node that are not neighbours to each other (and hereby do not form a triangle), to derive new potential triangles to include in module-defining procedure. The results show an improvement of pure topological approach, in terms of number of predicted modules that match known complexes.Keywords: Modules, systems biology, protein interactionnetworks, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171649 Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks
Authors: Maassoumeh Javadi Baygi, Abdul Rahman B Ramli, Borhanuddin Mohd Ali, Syamsiah Mashohor
Abstract:
The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.Keywords: Quality of Service, Routing, Ant Colony Optimization, Ant-based algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13311648 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25021647 Enhancing the Performance of Wireless Sensor Networks Using Low Power Design
Authors: N. Mahendran, R. Madhuranthi
Abstract:
Wireless sensor networks (WSNs), are constantly in demand to process information more rapidly with less energy and area cost. Presently, processor based solutions have difficult to achieve high processing speed with low-power consumption. This paper presents a simple and accurate data processing scheme for low power wireless sensor node, based on reduced number of processing element (PE). The presented model provides a simple recursive structure (SRS) to process the sampled data in the wireless sensor environment and to reduce the power consumption in wireless sensor node. Based on this model, to process the incoming samples and produce a smaller amount of data sufficient to reconstruct the original signal. The ModelSim simulator used to simulate SRS structure. Functional simulation is carried out for the validation of the presented architecture. Xilinx Power Estimator (XPE) tool is used to measure the power consumption. The experimental results show the average power consumption of 91 mW; this is 42% improvement compared to the folded tree architecture.Keywords: Power consumption, energy efficiency, low power WSN node, recursive structure, sleep/wake scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10181646 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500
Authors: Mustafa Elfituri, Jonathan Cook
Abstract:
Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.
Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5591645 The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge
Authors: Futoshi Kakuta, Takashi Ishida
Abstract:
Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.Keywords: Global warming counter measure, energy technology, solid fuel production, biogas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17391644 An Efficient Energy Adaptive Hybrid Error Correction Technique for Underwater Wireless Sensor Networks
Authors: Ammar Elyas babiker, M.Nordin B. Zakaria, Hassan Yosif, Samir B. Ibrahim
Abstract:
Variable channel conditions in underwater networks, and variable distances between sensors due to water current, leads to variable bit error rate (BER). This variability in BER has great effects on energy efficiency of error correction techniques used. In this paper an efficient energy adaptive hybrid error correction technique (AHECT) is proposed. AHECT adaptively changes error technique from pure retransmission (ARQ) in a low BER case to a hybrid technique with variable encoding rates (ARQ & FEC) in a high BER cases. An adaptation algorithm depends on a precalculated packet acceptance rate (PAR) look-up table, current BER, packet size and error correction technique used is proposed. Based on this adaptation algorithm a periodically 3-bit feedback is added to the acknowledgment packet to state which error correction technique is suitable for the current channel conditions and distance. Comparative studies were done between this technique and other techniques, and the results show that AHECT is more energy efficient and has high probability of success than all those techniques.Keywords: Underwater communication, wireless sensornetworks, error correction technique, energy efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571643 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait
Authors: Ali A. Hammadi
Abstract:
In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.
Keywords: Passive optical networks, fiber to the premises, access network, OTDR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10721642 Two Area Power Systems Economic Dispatch Problem Solving Considering Transmission Capacity Constraints
Authors: M. Zarei, A. Roozegar, R. Kazemzadeh, J.M. Kauffmann
Abstract:
This paper describes an efficient and practical method for economic dispatch problem in one and two area electrical power systems with considering the constraint of the tie transmission line capacity constraint. Direct search method (DSM) is used with some equality and inequality constraints of the production units with any kind of fuel cost function. By this method, it is possible to use several inequality constraints without having difficulty for complex cost functions or in the case of unavailability of the cost function derivative. To minimize the number of total iterations in searching, process multi-level convergence is incorporated in the DSM. Enhanced direct search method (EDSM) for two area power system will be investigated. The initial calculation step size that causes less iterations and then less calculation time is presented. Effect of the transmission tie line capacity, between areas, on economic dispatch problem and on total generation cost will be studied; line compensation and active power with reactive power dispatch are proposed to overcome the high generation costs for this multi-area system.Keywords: Economic dispatch, Power System Operation, Direct Search Method, Transmission Capacity Constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24911641 Parkinsons Disease Classification using Neural Network and Feature Selection
Authors: Anchana Khemphila, Veera Boonjing
Abstract:
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.
Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3790