Search results for: Associativity Based Routing (ABR)
10232 Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.Keywords: Clustering, method, algorithm, hierarchical, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 337810231 Wavelet based Image Registration Technique for Matching Dental x-rays
Authors: P. Ramprasad, H. C. Nagaraj, M. K. Parasuram
Abstract:
Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two levels of affine transformation. Wavelet coefficients are correlated instead of gray values. Algorithm has been applied on number of pre and post RCT (Root canal treatment) periapical radiographs. Root Mean Square Error (RMSE) and Correlation coefficients (CC) are used for quantitative evaluation. Proposed technique outperforms conventional Multiresolution strategy based image registration technique and manual registration technique.Keywords: Diagnostic imaging, geometric transformation, image registration, multiresolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176210230 Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm
Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna
Abstract:
Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 348010229 Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory
Authors: Julio Molleda, Daniel F. García, Juan C. Granda, Francisco J. Suárez
Abstract:
One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.Keywords: Classification, Pattern Recognition, ProbabilisticReasoning, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141110228 A Design of an Augmented Reality Based Virtual Heritage Application
Authors: Stephen Barnes, Ian Mills, Frances Cleary
Abstract:
Augmented and Virtual Reality based applications offer many benefits for the heritage and tourism sector. This technology provides a platform to showcase the regions of interest to people without the need for them to be physically present, which has had a positive impact on enticing tourists to visit those locations. However, the technology also provides the opportunity to present historical artefacts in a form that accurately represents their original, intended appearance. Three sites of interest were identified in the Lingaun Valley in South East Ireland wherein virtual representations of site specific artefacts of interest were created via a multidisciplinary team encompassing archaeology, art history, 3D modelling, design and software development. The collated information has been presented to users via an Augmented Reality mobile based application that provides information in an engaging manner that encourages an interest in history as well as visits to the sites in the Lingaun Valley.
Keywords: Augmented Reality, Virtual Heritage, 3D modelling, archaeology, virtual representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52410227 Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for Thyristor Controlled Series Compensator (TCSC)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a TCSC-based controller, to enhance power system stability.
Keywords: Thyristor Controlled Series Compensator, geneticalgorithm; particle swarm optimization; Phillips-Heffron model;power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315410226 e/b-Learning Activities and High School Pedagogy
Authors: Rui Antunes
Abstract:
This article presents the implementation of several different e/b-Learning collaborative activities, used to improve the students learning process in an high school Polytechnic Institution. A new learning model arises, based on a combination between face-toface and distance leaning. Learning is now becoming centered with the development of collaborative activities, and its actors (teachers and students) have to be re-socialized to a new e/b-Learning paradigm. Measuring approaches are proposed for this model and results are presented, showing prospective correlation between students learning success and the use of online collaborative activities.Keywords: e/b-Learning, Collaborative Learning, TeachingCommunities, Web-based Courseware
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170610225 Knowledge Based Model for Power Transformer Life Cycle Management Using Knowledge Engineering
Authors: S. S. Bhandari, N. Chakpitak, K. Meksamoot, T. Chandarasupsang
Abstract:
Under the limitation of investment budget, a utility company is required to maximize the utilization of their existing assets during their life cycle satisfying both engineering and financial requirements. However, utility does not have knowledge about the status of each asset in the portfolio neither in terms of technical nor financial values. This paper presents a knowledge based model for the utility companies in order to make an optimal decision on power transformer with their utilization. CommonKADS methodology, a structured development for knowledge and expertise representation, is utilized for designing and developing knowledge based model. A case study of One MVA power transformer of Nepal Electricity Authority is presented. The results show that the reusable knowledge can be categorized, modeled and utilized within the utility company using the proposed methodologies. Moreover, the results depict that utility company can achieve both engineering and financial benefits from its utilization.Keywords: CommonKADS, Knowledge Engineering, LifeCycle Management, Power Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230410224 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks
Authors: V. Revathi, J. Thaarrini, M. Venkob Rao
Abstract:
This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA: GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.
Keywords: Bottom ash, GGBS, alkali activation, paver block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403710223 Ranking Fuzzy Numbers Based on Lexicographical Ordering
Authors: B. Farhadinia
Abstract:
Although so far, many methods for ranking fuzzy numbers have been discussed broadly, most of them contained some shortcomings, such as requirement of complicated calculations, inconsistency with human intuition and indiscrimination. The motivation of this study is to develop a model for ranking fuzzy numbers based on the lexicographical ordering which provides decision-makers with a simple and efficient algorithm to generate an ordering founded on a precedence. The main emphasis here is put on the ease of use and reliability. The effectiveness of the proposed method is finally demonstrated by including a comprehensive comparing different ranking methods with the present one.Keywords: Ranking fuzzy numbers, Lexicographical ordering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181210222 Context for Simplicity: A Basis for Context-aware Systems Based on the 3GPP Generic User Profile
Authors: Enrico Rukzio, George N. Prezerakos, Giovanni Cortese, Eleftherios Koutsoloukas, Sofia Kapellaki
Abstract:
The paper focuses on the area of context modeling with respect to the specification of context-aware systems supporting ubiquitous applications. The proposed approach, followed within the SIMPLICITY IST project, uses a high-level system ontology to derive context models for system components which consequently are mapped to the system's physical entities. For the definition of user and device-related context models in particular, the paper suggests a standard-based process consisting of an analysis phase using the Common Information Model (CIM) methodology followed by an implementation phase that defines 3GPP based components. The benefits of this approach are further depicted by preliminary examples of XML grammars defining profiles and components, component instances, coupled with descriptions of respective ubiquitous applications.
Keywords: 3GPP, context, context-awareness, context model, information model, user model, XML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877410221 The Content Based Objective Metrics for Video Quality Evaluation
Authors: Michal Mardiak, Jaroslav Polec
Abstract:
In this paper we proposed comparison of four content based objective metrics with results of subjective tests from 80 video sequences. We also include two objective metrics VQM and SSIM to our comparison to serve as “reference” objective metrics because their pros and cons have already been published. Each of the video sequence was preprocessed by the region recognition algorithm and then the particular objective video quality metric were calculated i.e. mutual information, angular distance, moment of angle and normalized cross-correlation measure. The Pearson coefficient was calculated to express metrics relationship to accuracy of the model and the Spearman rank order correlation coefficient to represent the metrics relationship to monotonicity. The results show that model with the mutual information as objective metric provides best result and it is suitable for evaluating quality of video sequences.
Keywords: Objective quality metrics, mutual information, region recognition, content based metrics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150610220 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach
Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh
Abstract:
Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.
Keywords: Activated carbon, adsorption, immobilization, POME based lipase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257510219 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral
Abstract:
Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162910218 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.
Keywords: Authentication, iris recognition, Adaboost, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193710217 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels
Authors: Miloje S. Radenkovic, Tamal Bose
Abstract:
This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145410216 Complexity of Component-based Development of Embedded Systems
Authors: M. Zheng, V. S. Alagar
Abstract:
The paper discusses complexity of component-based development (CBD) of embedded systems. Although CBD has its merits, it must be augmented with methods to control the complexities that arise due to resource constraints, timeliness, and run-time deployment of components in embedded system development. Software component specification, system-level testing, and run-time reliability measurement are some ways to control the complexity.Keywords: Components, embedded systems, complexity, softwaredevelopment, traffic controller system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149910215 Secured Session Based Profile Caching for E-Learning Systems Using WiMAX Networks
Authors: R. Chithra, B. Kalaavathi
Abstract:
E-Learning enables the users to learn at anywhere at any time. In E-Learning systems, authenticating the E-Learning user has security issues. The usage of appropriate communication networks for providing the internet connectivity for E-learning is another challenge. WiMAX networks provide Broadband Wireless Access through the Multicast Broadcast Service so these networks can be most suitable for E-Learning applications. The authentication of E-Learning user is vulnerable to session hijacking problems. The repeated authentication of users can be done to overcome these issues. In this paper, session based Profile Caching Authentication is proposed. In this scheme, the credentials of E-Learning users can be cached at authentication server during the initial authentication through the appropriate subscriber station. The proposed cache based authentication scheme performs fast authentication by using cached user profile. Thus, the proposed authentication protocol reduces the delay in repeated authentication to enhance the security in ELearning.Keywords: Authentication, E-Learning, WiMAX, Security, Profile caching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156610214 Applications of Building Information Modeling (BIM) in Knowledge Sharing and Management in Construction
Authors: Shu-Hui Jan, Shih-Ping Ho, Hui-Ping Tserng
Abstract:
Construction knowledge can be referred to and reused among involved project managers and jobsite engineers to alleviate problems on a construction jobsite and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology to provide sharing of construction knowledge by using the Building Information Modeling (BIM) approach. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format, and facilitation of easy updating and transfer of information in the 3D BIM environment. Using the BIM approach, project managers and engineers can gain knowledge related to 3D BIM and obtain feedback provided by jobsite engineers for future reference. This study addresses the application of knowledge sharing management in the construction phase of construction projects and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to verify the proposed methodology and demonstrate the effectiveness of sharing knowledge in the BIM environment. The combined results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM approach and web technology.
Keywords: Construction knowledge management, building information modeling, project management, web-based information system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435210213 Analysis of Feature Space for a 2d/3d Vision based Emotion Recognition Method
Authors: Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
In modern human computer interaction systems (HCI), emotion recognition is becoming an imperative characteristic. The quest for effective and reliable emotion recognition in HCI has resulted in a need for better face detection, feature extraction and classification. In this paper we present results of feature space analysis after briefly explaining our fully automatic vision based emotion recognition method. We demonstrate the compactness of the feature space and show how the 2d/3d based method achieves superior features for the purpose of emotion classification. Also it is exposed that through feature normalization a widely person independent feature space is created. As a consequence, the classifier architecture has only a minor influence on the classification result. This is particularly elucidated with the help of confusion matrices. For this purpose advanced classification algorithms, such as Support Vector Machines and Artificial Neural Networks are employed, as well as the simple k- Nearest Neighbor classifier.Keywords: Facial expression analysis, Feature extraction, Image processing, Pattern Recognition, Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192310212 The Problems of Employment Form Selection of Capital Group Management Team Members in the Light of Chosen Company Management Theories
Authors: D. Bąk-Grabowska, A. Jagoda
Abstract:
Managing a capital group is a complex and specific process. It creates special conditions for the introduction of team work organization of managers. The selection of a manager employment form is a problem which gets complicated in case of management teams. The considered possibilities are an employment-based and non-employment managerial contract, which can be based on a thorough action or on formulating definite expectations regarding the results of a manager’s work. The problem of selection between individual and collegiate settlement of managers’ work has been pointed out. The deliberations were based on the assumptions of chosen company management theories, including transactional cost, agency theory, nexus of contracts theory, stewardship theory and theories referring directly to management teams, i.e. Upper echelons theory.
Keywords: Capital group, employment forms, management teams, managers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141910211 An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor
Authors: Lee Feng Koo, Tze Jin Wong, Pang Hung Yiu, Nik Mohd Asri Nik Long
Abstract:
Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.
Keywords: Decryption, encryption, elliptic curve, greater common divisor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70510210 Exploring Pisa Monuments Using Mobile Augmented Reality
Authors: Mihai Duguleana, Florin Girbacia, Cristian Postelnicu, Raffaello Brodi, Marcello Carrozzino
Abstract:
Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user’s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments’ 3D map database and the navigation algorithm.
Keywords: Augmented reality, electronic compass, GPS, location-based service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169410209 Human Motion Capture: New Innovations in the Field of Computer Vision
Authors: Najm Alotaibi
Abstract:
Human motion capture has become one of the major area of interest in the field of computer vision. Some of the major application areas that have been rapidly evolving include the advanced human interfaces, virtual reality and security/surveillance systems. This study provides a brief overview of the techniques and applications used for the markerless human motion capture, which deals with analyzing the human motion in the form of mathematical formulations. The major contribution of this research is that it classifies the computer vision based techniques of human motion capture based on the taxonomy, and then breaks its down into four systematically different categories of tracking, initialization, pose estimation and recognition. The detailed descriptions and the relationships descriptions are given for the techniques of tracking and pose estimation. The subcategories of each process are further described. Various hypotheses have been used by the researchers in this domain are surveyed and the evolution of these techniques have been explained. It has been concluded in the survey that most researchers have focused on using the mathematical body models for the markerless motion capture.
Keywords: Human Motion Capture, Computer Vision, Vision based, Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249110208 Adaptive Naïve Bayesian Anti-Spam Engine
Authors: Wojciech P. Gajewski
Abstract:
The problem of spam has been seriously troubling the Internet community during the last few years and currently reached an alarming scale. Observations made at CERN (European Organization for Nuclear Research located in Geneva, Switzerland) show that spam mails can constitute up to 75% of daily SMTP traffic. A naïve Bayesian classifier based on a Bag Of Words representation of an email is widely used to stop this unwanted flood as it combines good performance with simplicity of the training and classification processes. However, facing the constantly changing patterns of spam, it is necessary to assure online adaptability of the classifier. This work proposes combining such a classifier with another NBC (naïve Bayesian classifier) based on pairs of adjacent words. Only the latter will be retrained with examples of spam reported by users. Tests are performed on considerable sets of mails both from public spam archives and CERN mailboxes. They suggest that this architecture can increase spam recall without affecting the classifier precision as it happens when only the NBC based on single words is retrained.
Keywords: Text classification, naïve Bayesian classification, spam, email.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441510207 Electronic Health Record System: A Perspective to Improve the Value of Services Rendered to Patients in Healthcare Organization in Rwanda, Case of CHUB and Hopital De Nemba
Authors: Mugabe Nzarama Gabriel
Abstract:
In Rwanda, many healthcare organizations are still using a paper based patients’ data record system although it still present weaknesses to share health patients’ information across different services when necessary. In developed countries, the EHR has been put in place to revolutionize the paper based record system but still the EHR has some challenges related to privacy, security, or interoperability. The purpose of this research was to assess the existing patients’ data record system in healthcare sector in Rwanda, see what an EHR can improve to the system in place and assess the acceptance of EHR as system which is interoperable, very secure and interoperable and see whether stakeholders are ready to adopt the system. The case based methodology was used and TAM theoretical framework to design the questionnaire for the survey. A judgmental sample across two cases, CHUB and Hopital de Nemba, has been selected and SPSS has been used for descriptive statistics. After a qualitative analysis, the findings showed that the paper based record is useful, gives complete information about the patient, protects the privacy of patients but it is still less secure and less interoperable. The respondents shown that they are ready to use the proposed EHR System and want it secure, capable of enforcing the privacy but still they are not all ready for the interoperability. A conclusion has been formulated; recommendations and further research have been proposed.Keywords: EHR system, healthcare service, TAM, privacy, interoperability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110310206 A New Algorithm to Stereo Correspondence Using Rank Transform and Morphology Based On Genetic Algorithm
Authors: Razagh Hafezi, Ahmad Keshavarz, Vida Moshfegh
Abstract:
This paper presents a novel algorithm of stereo correspondence with rank transform. In this algorithm we used the genetic algorithm to achieve the accurate disparity map. Genetic algorithms are efficient search methods based on principles of population genetic, i.e. mating, chromosome crossover, gene mutation, and natural selection. Finally morphology is employed to remove the errors and discontinuities.Keywords: genetic algorithm, morphology, rank transform, stereo correspondence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217310205 RBF Modelling and Optimization Control for Semi-Batch Reactors
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.
Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249610204 Performance Complexity Measurement of Tightening Equipment Based on Kolmogorov Entropy
Authors: Guoliang Fan, Aiping Li, Xuemei Liu, Liyun Xu
Abstract:
The performance of the tightening equipment will decline with the working process in manufacturing system. The main manifestations are the randomness and discretization degree increasing of the tightening performance. To evaluate the degradation tendency of the tightening performance accurately, a complexity measurement approach based on Kolmogorov entropy is presented. At first, the states of performance index are divided for calibrating the discrete degree. Then the complexity measurement model based on Kolmogorov entropy is built. The model describes the performance degradation tendency of tightening equipment quantitatively. At last, a study case is applied for verifying the efficiency and validity of the approach. The research achievement shows that the presented complexity measurement can effectively evaluate the degradation tendency of the tightening equipment. It can provide theoretical basis for preventive maintenance and life prediction of equipment.
Keywords: Complexity measurement, Kolmogorov entropy, manufacturing system, performance evaluation, tightening equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96410203 Transformer Top-Oil Temperature Modeling and Simulation
Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende
Abstract:
The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492