Search results for: healthcare networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2044

Search results for: healthcare networks

844 Hybrid Approach for Country’s Performance Evaluation

Authors: C. Slim

Abstract:

This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.

Keywords: Artificial neural networks, support vector machine, data envelopment analysis, aggregations, indicators of performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
843 Using Technology with a New Model of Management Development by Simulation of Neural Network and its Application on Intelligent Schools

Authors: Ahmad Ghayoumi, Mehdi Ghayoumi

Abstract:

Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand management improvement is best described as the process from which managers learn and improve their skills not only to benefit themselves but also their employing organizations Here, we present a model Management improvement System that has been applied on some schools and have made strict improvement.

Keywords: Intelligent school, Management development system, Learning station, Teaching station

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
842 Comparison of Frequency-Domain Contention Schemes in Wireless LANs

Authors: Li Feng

Abstract:

In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we present the latest research progress on the weighed frequency-domain contention. We compare the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention.

Keywords: 802.11, wireless LANs, frequency-domain contention, T2F.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
841 Signature Recognition Using Conjugate Gradient Neural Networks

Authors: Jamal Fathi Abu Hasna

Abstract:

There are two common methodologies to verify signatures: the functional approach and the parametric approach. This paper presents a new approach for dynamic handwritten signature verification (HSV) using the Neural Network with verification by the Conjugate Gradient Neural Network (NN). It is yet another avenue in the approach to HSV that is found to produce excellent results when compared with other methods of dynamic. Experimental results show the system is insensitive to the order of base-classifiers and gets a high verification ratio.

Keywords: Signature Verification, MATLAB Software, Conjugate Gradient, Segmentation, Skilled Forgery, and Genuine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
840 Developing of Intelligent Schools with a New Model of Strategic Management System

Authors: Ahmad Ghayoumi, Mehdi Ghayoumi

Abstract:

Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand Strategic management is a field that deals with the major intended and emergent initiatives taken by general managers on behalf of owners, involving utilization of resources, to enhance the performance of firms in their external environments. Here, we present a model Strategic Management System that has been applied on some schools and have made strict improvement.

Keywords: Intelligent school, Strategic management system, Learning station, Teaching station

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
839 ANDASA: A Web Environment for Artistic and Cultural Data Representation

Authors: Carole Salis, Marie F. Wilson, Fabrizio Murgia, Cristian Lai, Franco Atzori, Giulia M. Orrù

Abstract:

ANDASA is a knowledge management platform for the capitalization of knowledge and cultural assets for the artistic and cultural sectors. It was built based on the priorities expressed by the participating artists. Through mapping artistic activities and specificities, it enables to highlight various aspects of the artistic research and production. Such instrument will contribute to create networks and partnerships, as it enables to evidentiate who does what, in what field, using which methodology. The platform is accessible to network participants and to the general public.

Keywords: Cultural promotion, knowledge representation, cultural mapping, ICT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
838 Face Recognition: A Literature Review

Authors: A. S. Tolba, A.H. El-Baz, A.A. El-Harby

Abstract:

The task of face recognition has been actively researched in recent years. This paper provides an up-to-date review of major human face recognition research. We first present an overview of face recognition and its applications. Then, a literature review of the most recent face recognition techniques is presented. Description and limitations of face databases which are used to test the performance of these face recognition algorithms are given. A brief summary of the face recognition vendor test (FRVT) 2002, a large scale evaluation of automatic face recognition technology, and its conclusions are also given. Finally, we give a summary of the research results.

Keywords: Combined classifiers, face recognition, graph matching, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7725
837 Evaluation Factors of Clinical Decision Support System in u_Healthcare Service

Authors: Sun K. Yoo, Ki-Chang Nam, Hyun-Young Shin, Ho-Seong Moon, Hee Cheol Kang

Abstract:

Automated intelligent, clinical decision support systems generally promote to help or to assist physicians and patients regarding to prevention of diseases or treatment of illnesses using computer represented knowledge and information. In this paper, assessment factors affecting the proper design of clinical decision support system were investigated. The required procedure steps for gathering the data from clinical trial and extracting the information from large volume of healthcare repositories were listed, which are necessary for validation and verification of evidence-based implementation of clinical decision support system. The goal of this paper is to extract useful evaluation factors affecting the quality of the clinical decision support system in the design, development, and implementation of a computer-based decision support system.

Keywords: Evaluation, Clinical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
836 The Use of Network Theory in Heritage Cities

Authors: J. L. Oliver, T. Agryzkov, L. Tortosa, J. Vicent, J. Santacruz

Abstract:

This paper aims to demonstrate how the use of Network Theory can be applied to a very interesting and complex urban situation: The parts of a city which may have some patrimonial value, but because of their lack of relevant architectural elements, they are not considered to be historic in a conventional sense. In this paper, we use the suburb of La Villaflora in the city of Quito, Ecuador as our case study. We first propose a system of indicators as a tool to characterize and quantify the historic value of a geographic area. Then, we apply these indicators to the suburb of La Villaflora and use Network Theory to understand and propose actions.

Keywords: Data visualization, historic value, spatial analysis, urban networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107
835 Hospital Facility Location Selection Using Permanent Analytics Process

Authors: C. Ardil

Abstract:

In this paper, a new MCDMA approach, the permanent analytics process is proposed to assess the immovable valuation criteria and their significance in the placement of the healthcare facility. Five decision factors are considered for the value and selection of immovables. In the multiple factor selection problems, the priority vector of the criteria used to compare several immovables is first determined using the permanent analytics method, a mathematical model for the multiple criteria decisionmaking process. Then, to demonstrate the viability and efficacy of the suggested approach, twenty potential candidate locations were evaluated using the hospital site selection problem's decision criteria. The ranking accuracy of estimation was evaluated using composite programming, which took into account both the permanent analytics process and the weighted multiplicative model. 

Keywords: Hospital Facility Location Selection, Permanent Analytics Process, Multiple Criteria Decision Making (MCDM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435
834 Web Traffic Mining using Neural Networks

Authors: Farhad F. Yusifov

Abstract:

With the explosive growth of data available on the Internet, personalization of this information space become a necessity. At present time with the rapid increasing popularity of the WWW, Websites are playing a crucial role to convey knowledge and information to the end users. Discovering hidden and meaningful information about Web users usage patterns is critical to determine effective marketing strategies to optimize the Web server usage for accommodating future growth. The task of mining useful information becomes more challenging when the Web traffic volume is enormous and keeps on growing. In this paper, we propose a intelligent model to discover and analyze useful knowledge from the available Web log data.

Keywords: Clustering, Self organizing map, Web log files, Web traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
833 PSO-Based Planning of Distribution Systems with Distributed Generations

Authors: Amin Hajizadeh, Ehsan Hajizadeh

Abstract:

This paper presents a multi-objective formulation for optimal siting and sizing of distributed generation (DG) resources in distribution systems in order to minimize the cost of power losses and energy not supplied. The implemented technique is based on particle swarm optimization (PSO) and weight method that employed to obtain the best compromise between these costs. Simulation results on 33-bus distribution test system are presented to demonstrate the effectiveness of the proposed procedure.

Keywords: Distributed generation, distribution networks, particle swarm optimization, reliability, weight method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
832 Averaging Mechanisms to Decision Making for Handover in GSM

Authors: S. Akhila, M. Lakshminarayana

Abstract:

In cellular networks, limited availability of resources has to be tapped to its fullest potential. In view of this aspect, a sophisticated averaging and voting technique has been discussed in this paper, wherein the radio resources available are utilized to the fullest value by taking into consideration, several network and radio parameters which decide on when the handover has to be made and thereby reducing the load on Base station .The increase in the load on the Base station might be due to several unnecessary handover taking place which can be eliminated by making judicious use of the radio and network parameters.

Keywords: Averaging and Voting, Handover, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3510
831 Mobile Medical Operation Route Planning

Authors: K. Somprasonk, R. Boondiskulchok

Abstract:

Medical services are usually provided in hospitals; however, in developing country, some rural residences have fewer opportunities to access in healthcare services due to the limitation of transportation communication. Therefore, in Thailand, there are charitable organizations operating to provide medical treatments to these people by shifting the medical services to operation sites; this is commonly known as mobile medical service. Operation routing is important for the organization to reduce its transportation cost in order to focus more on other important activities; for instance, the development of medical apparatus. VRP is applied to solve the problem of high transportation cost of the studied organization with the searching techniques of saving algorithm to find the minimum total distance of operation route and satisfy available time constraints of voluntary medical staffs.

Keywords: Decision Support System, Mobile Medical Service Planning, Saving Algorithm, Vehicle Routing Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
830 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation

Authors: Noura Al-Ajmi, Mohammed A. Almulla

Abstract:

With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.

Keywords: Headache diagnosis system, treatment recommender system, rule-based expert system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
829 Home-Network Security Model in Ubiquitous Environment

Authors: Dong-Young Yoo, Jong-Whoi Shin, Jin-Young Choi

Abstract:

Social interest and demand on Home-Network has been increasing greatly. Although various services are being introduced to respond to such demands, they can cause serious security problems when linked to the open network such as Internet. This paper reviews the security requirements to protect the service users with assumption that the Home-Network environment is connected to Internet and then proposes the security model based on the requirement. The proposed security model can satisfy most of the requirements and further can be dynamically applied to the future ubiquitous Home-Networks.

Keywords: Home-Network, Security, Vulnerability, Response, Countermeasure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
828 Using Discrete Event Simulation Approach to Reduce Waiting Times in Computed Tomography Radiology Department

Authors: Mwafak Shakoor

Abstract:

The purpose of this study was to reduce patient waiting times, improve system throughput and improve resources utilization in radiology department. A discrete event simulation model was developed using Arena simulation software to investigate different alternatives to improve the overall system delivery based on adding resource scenarios due to the linkage between patient waiting times and resource availability. The study revealed that there is no addition investment need to procure additional scanner but hospital management deploy managerial tactics to enhance machine utilization and reduce the long waiting time in the department.

Keywords: Arena, Computed Tomography (CT), Discrete event simulation, Healthcare modeling, Radiology department, Waiting time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3551
827 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: Angle of internal friction, Cone penetrating test, General regression neural network, Soil modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
826 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage

Authors: L. Ramirez, E. Guillén, J. Sánchez

Abstract:

Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.

Keywords: Analytics, telemedicine, internet of things, cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
825 A Study on the Relation of Corporate Governance and Pricing for Initial Public Offerings

Authors: Chei-Chang Chiou, Sen-Wei Wang, Yu-Min Wang

Abstract:

The purpose of this study is to investigate the relationship between corporate governance and pricing for initial public offerings (IPOs). Empirical result finds that the prediction of pricing of IPOs with corporate governance added can have a rather higher degree of predicting accuracy than that of non governance added during the training and testing samples. Therefore, it can be observed that corporate governance mechanism can affect the pricing of IPOs

Keywords: Artificial neural networks, corporate governance, initial public offerings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
824 Particle Swarm Optimization with Interval-valued Genotypes and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of particle swarm optimization (PSO) for solving interval-valued optimization problems and applies the extended PSO to evolutionary training of neural networks (NNs) with interval weights. In the proposed PSO, values in the genotypes are not real numbers but intervals. Experimental results show that interval-valued NNs trained by the proposed method could well approximate hidden target functions despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithms, swarm intelligence, particle swarm optimization, neural network, interval arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
823 Encrypted Audio Transmission Using Synchronized Nd: YAG Lasers

Authors: R.M. López-Gutiérrez, C. Cruz-Hernández, C. Posadas-Castillo, E.E.García-Guerrero

Abstract:

Encoded information based on synchronization of coupled chaotic Nd:YAG lasers in master-slave configuration is numerically studied. Encoding, transmission, and decoding of information in optical chaotic communication with a single channel is presented. We analyze the robustness of the encrypted audio transmission in a channel noise. In order to illustrate this synchronization robustness, we present two cases of study: synchronization and transmission with a single channel without and with noise in the channel.

Keywords: Encryption, Secure coomunication, Chaos, Synchronization, Complex networks, Nd:YAG laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
822 IT System in the Food Supply Chain Safety: Application in SMEs Sector

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.

Keywords: Food Supply Chain, IT System, Food Safety, SME.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
821 Improving Patients Discharge Process in Hospitals by using Six Sigma Approach

Authors: Mahmoud A. El-Banna

Abstract:

The need to increase the efficiency of health care systems is becoming an obligation, and one of area of improvement is the discharge process. The objective of this work is to minimize the patients discharge time (for insured patients) to be less than 50 minutes by using six sigma approach, this improvement will also: lead to an increase in customer satisfaction, increase the number of admissions and turnover on the rooms, increase hospital profitability.Three different departments were considered in this study: Female, Male, and Paediatrics. Six Sigma approach coupled with simulation has been applied to reduce the patients discharge time for pediatrics, female, and male departments at hospital. Upon applying these recommendations at hospital: 60%, 80%, and 22% of insured female, male, and pediatrics patients respectively will have discharge time less than the upper specification time i.e. 50 min.

Keywords: Discharge Time, Healthcare, Hospitals, Patients, Process Improvement, Six Sigma, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4744
820 Mapping Complex, Large – Scale Spiking Networks on Neural VLSI

Authors: Christian Mayr, Matthias Ehrlich, Stephan Henker, Karsten Wendt, René Schüffny

Abstract:

Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.

Keywords: Large scale VLSI neural net, topology mapping, complex pulse communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
819 A Learning Agent for Knowledge Extraction from an Active Semantic Network

Authors: Simon Thiel, Stavros Dalakakis, Dieter Roller

Abstract:

This paper outlines the development of a learning retrieval agent. Task of this agent is to extract knowledge of the Active Semantic Network in respect to user-requests. Based on a reinforcement learning approach, the agent learns to interpret the user-s intention. Especially, the learning algorithm focuses on the retrieval of complex long distant relations. Increasing its learnt knowledge with every request-result-evaluation sequence, the agent enhances his capability in finding the intended information.

Keywords: Reinforcement learning, learning retrieval agent, search in semantic networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
818 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas

Authors: Thulane Paepae, Tumisang Seodigeng

Abstract:

This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.

Keywords: Attainable region, dimethyl ether synthesis, mass balance, optimal reaction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
817 Minimization of Power Loss in Distribution Networks by Different Techniques

Authors: L.Ramesh, S.P.Chowdhury, S.Chowdhury, A.A.Natarajan, C.T.Gaunt

Abstract:

Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.

Keywords: Distribution system, Distributed Generation LossMinimization, Network Restructuring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6236
816 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks

Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi

Abstract:

This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

Keywords: Signature Recognition, Artificial Neural Network, Angle Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
815 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346