Search results for: fault monitoring and detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2520

Search results for: fault monitoring and detection

1320 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1319 Tool Tracker: A Toolkit Ensembling Useful Online Networking Tools for Efficient Management and Operation of a Network

Authors: Onkar Bhat Kodical, Sridhar Srinivasan, N.K. Srinath

Abstract:

Tool Tracker is a client-server based application. It is essentially a catalogue of various network monitoring and management tools that are available online. There is a database maintained on the server side that contains the information about various tools. Several clients can access this information simultaneously and utilize this information. The various categories of tools considered are packet sniffers, port mappers, port scanners, encryption tools, and vulnerability scanners etc for the development of this application. This application provides a front end through which the user can invoke any tool from a central repository for the purpose of packet sniffing, port scanning, network analysis etc. Apart from the tool, its description and the help files associated with it would also be stored in the central repository. This facility will enable the user to view the documentation pertaining to the tool without having to download and install the tool. The application would update the central repository with the latest versions of the tools. The application would inform the user about the availability of a newer version of the tool currently being used and give the choice of installing the newer version to the user. Thus ToolTracker provides any network administrator that much needed abstraction and ease-ofuse with respect to the tools that he can use to efficiently monitor a network.

Keywords: Network monitoring, single platform, client/server application, version management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
1318 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: Blood glucose monitoring, insulin pump, optimization, predictive control, diabetes disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
1317 Cooperative CDD Scheme Based on Hierarchical Modulation in OFDM System

Authors: Seung-Jun Yu, Yeong-Seop Ahn, Young-Min Ko, Hyoung-Kyu Song

Abstract:

In order to achieve high data rate and increase the spectral efficiency, multiple input multiple output (MIMO) system has been proposed. However, multiple antennas are limited by size and cost. Therefore, recently developed cooperative diversity scheme, which profits the transmit diversity only with the existing hardware by constituting a virtual antenna array, can be a solution. However, most of the introduced cooperative techniques have a common fault of decreased transmission rate because the destination should receive the decodable compositions of symbols from the source and the relay. In this paper, we propose a cooperative cyclic delay diversity (CDD) scheme that use hierarchical modulation. This scheme is free from the rate loss and allows seamless cooperative communication.

Keywords: MIMO, Cooperative communication, CDD, Hierarchical modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
1316 The Effect of Rotational Speed and Shaft Eccentric on Looseness of Bearing

Authors: Chalermsak Leetrakool, Komson Jirapattarasilp

Abstract:

This research was to study effect of rotational speed and eccentric factors, which were affected on looseness of bearing. The experiment was conducted on three rotational speeds and five eccentric distances with 5 replications. The results showed that influenced factor affected to looseness of bearing was rotational speed and eccentric distance which showed statistical significant. Higher rotational speed would cause on high looseness. Moreover, more eccentric distance, more looseness of bearing. Using bearing at high rotational with high eccentric of shaft would be affected bearing fault more than lower rotational speed. The prediction equation of looseness was generated by regression analysis. The prediction has an effected to the looseness of bearing at 91.5%.

Keywords: Bearing, Looseness, Rotational speed, Eccentric

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1315 Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading

Authors: K. M. Mohamed Muneer, Raghu V. Prakash, Krishnan Balasubramaniam

Abstract:

This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.

Keywords: Glass/Epoxy composites, Thermomechanical behavior, Infrared Thermography, Thermoelastic slope, Thermoplastic slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
1314 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection

Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung

Abstract:

This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.

Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938
1313 Comprehensive Regional Drought Assessment Index

Authors: A. Zeynolabedin, M. A. Olyaei, B. Ghiasi

Abstract:

Drought is an inevitable part of the earth’s climate. It occurs regularly with no clear warning and without recognizing borders. In addition, its impact is cumulative and not immediately discernible. Iran is located in a semi-arid region where droughts occur periodically as natural hazard. Standardized Precipitation Index (SPI), Surface Water Supply Index (SWSI), and Palmer Drought Severity Index (PDSI) are three well-known indices which describe drought severity; each has its own advantages and disadvantages and can be used for specific types of drought. These indices take into account some factors such as precipitation, reservoir storage and discharge, temperature, and potential evapotranspiration in determining drought severity. In this paper, first all three indices are calculated in Aharchay river watershed located in northwestern part of Iran in East Azarbaijan province. Next, based on two other important parameters which are groundwater level and solar radiation, two new indices are defined. Finally, considering all five aforementioned indices, a combined drought index (CDI) is presented and calculated for the region. This combined index is based on all the meteorological, hydrological, and agricultural features of the region. The results show that the most severe drought condition in Aharchay watershed happened in Jun, 2004. The result of this study can be used for monitoring drought and prepare for the drought mitigation planning.

Keywords: Drought, index variation, regional assessment, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
1312 Daemon- Based Distributed Deadlock Detection and Resolution

Authors: Z. RahimAlipour, A. T. Haghighat

Abstract:

detecting the deadlock is one of the important problems in distributed systems and different solutions have been proposed for it. Among the many deadlock detection algorithms, Edge-chasing has been the most widely used. In Edge-chasing algorithm, a special message called probe is made and sent along dependency edges. When the initiator of a probe receives the probe back the existence of a deadlock is revealed. But these algorithms are not problem-free. One of the problems associated with them is that they cannot detect some deadlocks and they even identify false deadlocks. A key point not mentioned in the literature is that when the process is waiting to obtain the required resources and its execution has been blocked, how it can actually respond to probe messages in the system. Also the question of 'which process should be victimized in order to achieve a better performance when multiple cycles exist within one single process in the system' has received little attention. In this paper, one of the basic concepts of the operating system - daemon - will be used to solve the problems mentioned. The proposed Algorithm becomes engaged in sending probe messages to the mandatory daemons and collects enough information to effectively identify and resolve multi-cycle deadlocks in distributed systems.

Keywords: Distributed system, distributed deadlock detectionand resolution, daemon, false deadlock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1311 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach

Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi

Abstract:

Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.

Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial information science. Remote sensing, surface elevation changes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
1310 Optimal Document Archiving and Fast Information Retrieval

Authors: Hazem M. El-Bakry, Ahmed A. Mohammed

Abstract:

In this paper, an intelligent algorithm for optimal document archiving is presented. It is kown that electronic archives are very important for information system management. Minimizing the size of the stored data in electronic archive is a main issue to reduce the physical storage area. Here, the effect of different types of Arabic fonts on electronic archives size is discussed. Simulation results show that PDF is the best file format for storage of the Arabic documents in electronic archive. Furthermore, fast information detection in a given PDF file is introduced. Such approach uses fast neural networks (FNNs) implemented in the frequency domain. The operation of these networks relies on performing cross correlation in the frequency domain rather than spatial one. It is proved mathematically and practically that the number of computation steps required for the presented FNNs is less than that needed by conventional neural networks (CNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Information Storage and Retrieval, Electronic Archiving, Fast Information Detection, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
1309 A New Approach for Prioritization of Failure Modes in Design FMEA using ANOVA

Authors: Sellappan Narayanagounder, Karuppusami Gurusami

Abstract:

The traditional Failure Mode and Effects Analysis (FMEA) uses Risk Priority Number (RPN) to evaluate the risk level of a component or process. The RPN index is determined by calculating the product of severity, occurrence and detection indexes. The most critically debated disadvantage of this approach is that various sets of these three indexes may produce an identical value of RPN. This research paper seeks to address the drawbacks in traditional FMEA and to propose a new approach to overcome these shortcomings. The Risk Priority Code (RPC) is used to prioritize failure modes, when two or more failure modes have the same RPN. A new method is proposed to prioritize failure modes, when there is a disagreement in ranking scale for severity, occurrence and detection. An Analysis of Variance (ANOVA) is used to compare means of RPN values. SPSS (Statistical Package for the Social Sciences) statistical analysis package is used to analyze the data. The results presented are based on two case studies. It is found that the proposed new methodology/approach resolves the limitations of traditional FMEA approach.

Keywords: Failure mode and effects analysis, Risk priority code, Critical failure mode, Analysis of variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5438
1308 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems

Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo

Abstract:

The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.

Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
1307 A Structural Support Vector Machine Approach for Biometric Recognition

Authors: Vishal Awasthi, Atul Kumar Agnihotri

Abstract:

Face is a non-intrusive strong biometrics for identification of original and dummy facial by different artificial means. Face recognition is extremely important in the contexts of computer vision, psychology, surveillance, pattern recognition, neural network, content based video processing. The availability of a widespread face database is crucial to test the performance of these face recognition algorithms. The openly available face databases include face images with a wide range of poses, illumination, gestures and face occlusions but there is no dummy face database accessible in public domain. This paper presents a face detection algorithm based on the image segmentation in terms of distance from a fixed point and template matching methods. This proposed work is having the most appropriate number of nodal points resulting in most appropriate outcomes in terms of face recognition and detection. The time taken to identify and extract distinctive facial features is improved in the range of 90 to 110 sec. with the increment of efficiency by 3%.

Keywords: Face recognition, Principal Component Analysis, PCA, Linear Discriminant Analysis, LDA, Improved Support Vector Machine, iSVM, elastic bunch mapping technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494
1306 Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA

Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Ashraful Alam, Nam Kim, Jae-Hyeung Park

Abstract:

A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.

Keywords: Aw-SpPC, Expressoin Recognition, Face context, Face Detection, PCA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
1305 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring

Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus

Abstract:

A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.

Keywords: Cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1304 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2945
1303 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1302 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: Interferometry, MIMO RADAR, SAR, tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
1301 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
1300 Futuristic Black Box Design Considerations and Global Networking for Real Time Monitoring of Flight Performance Parameters

Authors: K. Parandhama Gowd

Abstract:

The aim of this research paper is to conceptualize, discuss, analyze and propose alternate design methodologies for futuristic Black Box for flight safety. The proposal also includes global networking concepts for real time surveillance and monitoring of flight performance parameters including GPS parameters. It is expected that this proposal will serve as a failsafe real time diagnostic tool for accident investigation and location of debris in real time. In this paper, an attempt is made to improve the existing methods of flight data recording techniques and improve upon design considerations for futuristic FDR to overcome the trauma of not able to locate the block box. Since modern day communications and information technologies with large bandwidth are available coupled with faster computer processing techniques, the attempt made in this paper to develop a failsafe recording technique is feasible. Further data fusion/data warehousing technologies are available for exploitation.

Keywords: Flight data recorder (FDR), black box, diagnostic tool, global networking, cockpit voice and data recorder (CVDR), air traffic control (ATC), air traffic, telemetry, tracking and control centers ATTTCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1299 Design and Simulation of Heartbeat Measurement System Using Arduino Microcontroller in Proteus

Authors: Muhibul H. Bhuyan, Mafujul Hasan

Abstract:

If a person can monitor his/her heart rate regularly then he/she can detect heart disease early and thus he/she can enjoy longer life span. Therefore, this disease should be taken seriously. Hence, many health care devices and monitoring systems are being designed to keep track of the heart disease. This work reports a design and simulation processes of an Arduino microcontroller based heart rate measurement and monitoring system in Proteus environment. Clipping sensors were utilized to sense the heart rate of an individual from the finger tips. It is a digital device and uses mainly infrared (IR) transmitter (mainly IR LED) and receiver (mainly IR photo-transistor or IR photo-detector). When the heart pumps the blood and circulates it among the blood vessels of the body, the changed blood pressure is detected by the transmitter and then reflected back to the receiver accordingly. The reflected signals are then processed inside the microcontroller through a software written assembly language and appropriate heart rate (HR) is determined by it in beats per minute (bpm) from the detected signal for a duration of 10 seconds and display the same in bpm on the LCD screen in digital format. The designed system was simulated on several persons with varying ages, for example, infants, adult persons and active athletes. Simulation results were found very satisfactory.

Keywords: Heart rate measurement, design, simulation, Proteus, Arduino Uno microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1298 Design and Development of an Efficient and Cost-Effective Microcontroller-Based Irrigation Control System to Enhance Food Security

Authors: Robert A. Sowah, Stephen K. Armoo, Koudjo M. Koumadi, Rockson Agyeman, Seth Y. Fiawoo

Abstract:

The development of the agricultural sector in Ghana has been reliant on the use of irrigation systems to ensure food security. However, the manual operation of these systems has not facilitated their maximum efficiency due to human limitations. This paper seeks to address this problem by designing and implementing an efficient, cost effective automated system which monitors and controls the water flow of irrigation through communication with an authorized operator via text messages. The automatic control component of the system is timer based with an Atmega32 microcontroller and a real time clock from the SM5100B cellular module. For monitoring purposes, the system sends periodic notification of the system on the performance of duty via SMS to the authorized person(s). Moreover, the GSM based Irrigation Monitoring and Control System saves time and labour and reduces cost of operating irrigation systems by saving electricity usage and conserving water. Field tests conducted have proven its operational efficiency and ease of assessment of farm irrigation equipment due to its costeffectiveness and data logging capabilities.

Keywords: Agriculture, control system, data logging, food security, irrigation system, microcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5208
1297 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
1296 Crash and Injury Characteristics of Riders in Motorcycle-Passenger Vehicle Crashes

Authors: Z. A. Ahmad Noor Syukri, A. J. Nawal Aswan, S. V. Wong

Abstract:

The motorcycle has become one of the most common type of vehicles used on the road, particularly in the Asia region, including Malaysia, due to its size-convenience and affordable price. This study focuses only on crashes involving motorcycles with passenger cars consisting 43 real world crashes obtained from in-depth crash investigation process from June 2016 till July 2017. The study collected and analyzed vehicle and site parameters obtained during crash investigation and injury information acquired from the patient-treating hospital. The investigation team, consisting of two personnel, is stationed at the Emergency Department of the treatment facility, and was dispatched to the crash scene once receiving notification of the related crashes. The injury information retrieved was coded according to the level of severity using the Abbreviated Injury Scale (AIS) and classified into different body regions. The data revealed that weekend crashes were significantly higher for the night time period and the crash occurrence was the highest during morning hours (commuting to work period) for weekdays. Bad weather conditions play a minimal effect towards the occurrence of motorcycle – passenger vehicle crashes and nearly 90% involved motorcycles with single riders. Riders up to 25 years old are heavily involved in crashes with passenger vehicles (60%), followed by 26-55 year age group with 35%. Male riders were dominant in each of the age segments. The majority of the crashes involved side impacts, followed by rear impacts and cars outnumbered the rest of the passenger vehicle types in terms of crash involvement with motorcycles. The investigation data also revealed that passenger vehicles were the most at-fault counterpart (62%) when involved in crashes with motorcycles and most of the crashes involved situations whereby both of the vehicles are travelling in the same direction and one of the vehicles is in a turning maneuver. More than 80% of the involved motorcycle riders had sustained yellow severity level during triage process. The study also found that nearly 30% of the riders sustained injuries to the lower extremities, while MAIS level 3 injuries were recorded for all body regions except for thorax region. The result showed that crashes in which the motorcycles were found to be at fault were more likely to occur during night and raining conditions. These types of crashes were also found to be more likely to involve other types of passenger vehicles rather than cars and possess higher likelihood in resulting higher ISS (>6) value to the involved rider. To reduce motorcycle fatalities, it first has to understand the characteristics concerned and focus may be given on crashes involving passenger vehicles as the most dominant crash partner on Malaysian roads.

Keywords: Motorcycle crash, passenger vehicle, in-depth crash investigation, injury mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
1295 Topographic Mapping of Farmland by Integration of Multiple Sensors on Board Low-Altitude Unmanned Aerial System

Authors: Mengmeng Du, Noboru Noguchi, Hiroshi Okamoto, Noriko Kobayashi

Abstract:

This paper introduced a topographic mapping system with time-saving and simplicity advantages based on integration of Light Detection and Ranging (LiDAR) data and Post Processing Kinematic Global Positioning System (PPK GPS) data. This topographic mapping system used a low-altitude Unmanned Aerial Vehicle (UAV) as a platform to conduct land survey in a low-cost, efficient, and totally autonomous manner. An experiment in a small-scale sugarcane farmland was conducted in Queensland, Australia. Subsequently, we synchronized LiDAR distance measurements that were corrected by using attitude information from gyroscope with PPK GPS coordinates for generation of precision topographic maps, which could be further utilized for such applications like precise land leveling and drainage management. The results indicated that LiDAR distance measurements and PPK GPS altitude reached good accuracy of less than 0.015 m.

Keywords: Land survey, light detection and ranging, post processing kinematic global positioning system, precision agriculture, topographic map, unmanned aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
1294 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: Blood glucose level, breath acetone concentration, diabetes, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
1293 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: A. Belhaj Mohamed, M. Saidi, N. Boucherb, N. Ourtani, A. Soltani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GCMS), capillary GC with flame-ionization detection, Compound Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (- 198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: Biomarkers, oil and gas seeps, organic geochemistry, source rock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3450
1292 Fault Tolerance in Distributed Database Systems

Authors: M. A. Adeboyejo, O. O. Adeosun

Abstract:

Pioneer networked systems assume that connections are reliable, and a faulty operation will be considered in case of losing a connection. Transient connections are typical of mobile devices. Areas of application of data sharing system such as these, lead to the conclusion that network connections may not always be reliable, and that the conventional approaches can be improved. Nigerian commercial banking industry is a critical system whose operation is increasingly becoming dependent on information technology (IT) driven information system. The proposed solution to this problem makes use of a hierarchically clustered network structure which we selected to reflect (as much as possible) the typical organizational structure of the Nigerian commercial banks. Representative transactions such as data updates and replication of the results of such updates were used to simulate the proposed model to show its applicability.

Keywords: Dependability, reliability, data redundancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3357
1291 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898