Search results for: Training Algorithm.
3003 Development of a Novel Low-Cost Flight Simulator for Pilot Training
Authors: Hongbin Gu, Dongsu Wu, Hui Liu
Abstract:
A novel low-cost flight simulator with the development goals cost effectiveness and high performance has been realized for meeting the huge pilot training needs of airlines. The simulator consists of an aircraft dynamics model, a sophisticated designed low-profile electrical driven motion system with a subsided cabin, a mixed reality based semi-virtual cockpit system, a control loading system and some other subsystems. It shows its advantages over traditional flight simulator by its features achieved with open architecture, software solutions and low-cost hardware.Keywords: Flight simulator, mixed reality, motion system, control loading system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29403002 Determining Cluster Boundaries Using Particle Swarm Optimization
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.
Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17203001 Lung Segmentation Algorithm for CAD System in CTA Images
Authors: H. Özkan, O. Osman, S. Şahin, M. M. Atasoy, H. Barutca, A. F. Boz, A. Olsun
Abstract:
In this study, we present a new and fast algorithm for lung segmentation using CTA images. This process is quite important especially at lung vessel segmentation, detection of pulmonary emboly, finding nodules or segmentation of airways. Applied method has been carried out at four steps. At first step, images have been applied optimal threshold. At the second one, the subsegment vessels, which have a place in lung region and which are in small dimension, have been removed. At the third one, identifying and segmentation of lungs and airway edges have been carried out. Lastly, by throwing away the airway, lung segmentation has been presented.
Keywords: Lung segmentation, computed tomography angiography, computer-aided diagnostic system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20083000 Manifold Analysis by Topologically Constrained Isometric Embedding
Authors: Guy Rosman, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel
Abstract:
We present a new algorithm for nonlinear dimensionality reduction that consistently uses global information, and that enables understanding the intrinsic geometry of non-convex manifolds. Compared to methods that consider only local information, our method appears to be more robust to noise. Unlike most methods that incorporate global information, the proposed approach automatically handles non-convexity of the data manifold. We demonstrate the performance of our algorithm and compare it to state-of-the-art methods on synthetic as well as real data.
Keywords: Dimensionality reduction, manifold learning, multidimensional scaling, geodesic distance, boundary detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14552999 EEG Spikes Detection, Sorting, and Localization
Authors: Mazin Z. Othman, Maan M. Shaker, Mohammed F. Abdullah
Abstract:
This study introduces a new method for detecting, sorting, and localizing spikes from multiunit EEG recordings. The method combines the wavelet transform, which localizes distinctive spike features, with Super-Paramagnetic Clustering (SPC) algorithm, which allows automatic classification of the data without assumptions such as low variance or Gaussian distributions. Moreover, the method is capable of setting amplitude thresholds for spike detection. The method makes use of several real EEG data sets, and accordingly the spikes are detected, clustered and their times were detected.Keywords: EEG time localizations, EEG spike detection, superparamagnetic algorithm, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25502998 Elections Management Information Communication System Voter Ballot
Authors: Zaza Tabagari, Zaza Sanikidze, George Giorgobiani
Abstract:
Abovepresented work deals with the new scope of application of information and communication technologies for the improvement of the election process in the biased environment. We are introducing a new concept of construction of the information-communication system for the election participant. It consists of four main components: Software, Physical Infrastructure, Structured Information and the Trained Stuff. The Structured Information is the bases of the whole system and is the collection of all possible events (irregularities among them) at the polling stations, which are structured in special templates, forms and integrated in mobile devices.The software represents a package of analytic modules, which operates with the dynamic database. The application of modern communication technologies facilities the immediate exchange of information and of relevant documents between the polling stations and the Server of the participant. No less important is the training of the staff for the proper functioning of the system. The e-training system with various modules should be applied in this respect. The presented methodology is primarily focused on the election processes in the countries of emerging democracies.It can be regarded as the tool for the monitoring of elections process by the political organization(s) and as one of the instruments to foster the spread of democracy in these countries.
Keywords: ICT, elections, structured information, dynamic databases, e-training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17452997 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution.Keywords: Multi-objective optimization, random drift particle swarm optimization, crowding distance, Pareto optimal solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14702996 A New Algorithm for Determining the Leading Coefficient of in the Parabolic Equation
Authors: Shiping Zhou, Minggen Cui
Abstract:
This paper investigates the inverse problem of determining the unknown time-dependent leading coefficient in the parabolic equation using the usual conditions of the direct problem and an additional condition. An algorithm is developed for solving numerically the inverse problem using the technique of space decomposition in a reproducing kernel space. The leading coefficients can be solved by a lower triangular linear system. Numerical experiments are presented to show the efficiency of the proposed methods.Keywords: parabolic equations, coefficient inverse problem, reproducing kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15812995 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network
Authors: Abed Sami Qawasme, Sameer Khader
Abstract:
This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.
Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6172994 UDCA: An Energy Efficient Clustering Algorithm for Wireless Sensor Network
Authors: Boregowda S.B., Hemanth Kumar A.R. Babu N.V, Puttamadappa C., And H.S Mruthyunjaya
Abstract:
In the past few years, the use of wireless sensor networks (WSNs) potentially increased in applications such as intrusion detection, forest fire detection, disaster management and battle field. Sensor nodes are generally battery operated low cost devices. The key challenge in the design and operation of WSNs is to prolong the network life time by reducing the energy consumption among sensor nodes. Node clustering is one of the most promising techniques for energy conservation. This paper presents a novel clustering algorithm which maximizes the network lifetime by reducing the number of communication among sensor nodes. This approach also includes new distributed cluster formation technique that enables self-organization of large number of nodes, algorithm for maintaining constant number of clusters by prior selection of cluster head and rotating the role of cluster head to evenly distribute the energy load among all sensor nodes.
Keywords: Clustering algorithms, Cluster head, Energy consumption, Sensor nodes, and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23902993 Motion Parameter Estimation via Dopplerlet-Transform-Based Matched Field Processing
Authors: Hongyan Dai
Abstract:
This work presents a matched field processing (MFP) algorithm based on Dopplerlet transform for estimating the motion parameters of a sound source moving along a straight line and with a constant speed by using a piecewise strategy, which can significantly reduce the computational burden. Monte Carlo simulation results and an experimental result are presented to verify the effectiveness of the algorithm advocated.Keywords: matched field processing; Dopplerlet transform; motion parameter estimation; piecewise strategy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12262992 Ultra High Speed Approach for Document Skew Detection and Correction Based On Centre of Gravity
Authors: Seyyed Yasser Hashemi
Abstract:
Skew detection and correction (SDC) has a direct effect in efficiency and exactitude of documents’ segmentation and analysis and thus is considered as a very important step in documents’ analysis field. Skew is a major problem in documents’ analysis for every language. For Arabic/Persian document scripts this problem is more severe because of special features of these languages. In this paper an efficient and fast algorithm for Document Skew Detection (DSD) based on the concept of segmentation and Center of Gravity (COG) is proposed. This algorithm is examined for 150 Arabic/Persian and English documents and SDC process are done successfully for 93 percent of documents with error rate of less than 1°. This algorithm shows better results for English documents compared to Arabic/Persian documents. The proposed method is also represents favorable results for handwritten, printed and also complicated documents such as newspapers and journals even with very low quality and resolution.
Keywords: Arabic/Persian document, Baseline, Centre of gravity, Document segmentation, Skew detection and correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19112991 Predicting the Minimum Free Energy RNA Secondary Structures using Harmony Search Algorithm
Authors: Abdulqader M. Mohsen, Ahamad Tajudin Khader, Dhanesh Ramachandram, Abdullatif Ghallab
Abstract:
The physical methods for RNA secondary structure prediction are time consuming and expensive, thus methods for computational prediction will be a proper alternative. Various algorithms have been used for RNA structure prediction including dynamic programming and metaheuristic algorithms. Musician's behaviorinspired harmony search is a recently developed metaheuristic algorithm which has been successful in a wide variety of complex optimization problems. This paper proposes a harmony search algorithm (HSRNAFold) to find RNA secondary structure with minimum free energy and similar to the native structure. HSRNAFold is compared with dynamic programming benchmark mfold and metaheuristic algorithms (RnaPredict, SetPSO and HelixPSO). The results showed that HSRNAFold is comparable to mfold and better than metaheuristics in finding the minimum free energies and the number of correct base pairs.
Keywords: Metaheuristic algorithms, dynamic programming algorithms, harmony search optimization, RNA folding, Minimum free energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23382990 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model
Authors: Nicolae Bold, Daniel Nijloveanu
Abstract:
The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.Keywords: Genetic algorithm, chromosomes, genes, cropping, agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16022989 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach
Authors: Farhad Asadi, S. Hossein Sadati
Abstract:
This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7592988 Bleeding Detection Algorithm for Capsule Endoscopy
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Automatic detection of bleeding is of practical importance since capsule endoscopy produces an extremely large number of images. Algorithm development of bleeding detection in the digestive tract is difficult due to different contrasts among the images, food dregs, secretion and others. In this study, were assigned weighting factors derived from the independent features of the contrast and brightness between bleeding and normality. Spectral analysis based on weighting factors was fast and accurate. Results were a sensitivity of 87% and a specificity of 90% when the accuracy was determined for each pixel out of 42 endoscope images.Keywords: bleeding, capsule endoscopy, image analysis, weighted spectrum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21192987 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications
Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur
Abstract:
The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.Keywords: ANN, discharge, modeling, prediction, sediment,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56852986 An Improved Greedy Routing Algorithm for Grid using Pheromone-Based Landmarks
Authors: Lada-On Lertsuwanakul, Herwig Unger
Abstract:
This paper objects to extend Jon Kleinberg-s research. He introduced the structure of small-world in a grid and shows with a greedy algorithm using only local information able to find route between source and target in delivery time O(log2n). His fundamental model for distributed system uses a two-dimensional grid with longrange random links added between any two node u and v with a probability proportional to distance d(u,v)-2. We propose with an additional information of the long link nearby, we can find the shorter path. We apply the ant colony system as a messenger distributed their pheromone, the long-link details, in surrounding area. The subsequence forwarding decision has more option to move to, select among local neighbors or send to node has long link closer to its target. Our experiment results sustain our approach, the average routing time by Color Pheromone faster than greedy method.
Keywords: Routing algorithm, Small-World network, Ant Colony Optimization, and Peer-to-peer System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18612985 Judges System for Classifiers Specialization
Authors: Abdel Rodríguez, Isis Bonet, Ricardo Grau, María M. García
Abstract:
In this paper we designed and implemented a new ensemble of classifiers based on a sequence of classifiers which were specialized in regions of the training dataset where errors of its trained homologous are concentrated. In order to separate this regions, and to determine the aptitude of each classifier to properly respond to a new case, it was used another set of classifiers built hierarchically. We explored a selection based variant to combine the base classifiers. We validated this model with different base classifiers using 37 training datasets. It was carried out a statistical comparison of these models with the well known Bagging and Boosting, obtaining significantly superior results with the hierarchical ensemble using Multilayer Perceptron as base classifier. Therefore, we demonstrated the efficacy of the proposed ensemble, as well as its applicability to general problems.Keywords: classifiers, delegation, ensemble
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13062984 Concept Indexing using Ontology and Supervised Machine Learning
Authors: Rossitza M. Setchi, Qiao Tang
Abstract:
Nowadays, ontologies are the only widely accepted paradigm for the management of sharable and reusable knowledge in a way that allows its automatic interpretation. They are collaboratively created across the Web and used to index, search and annotate documents. The vast majority of the ontology based approaches, however, focus on indexing texts at document level. Recently, with the advances in ontological engineering, it became clear that information indexing can largely benefit from the use of general purpose ontologies which aid the indexing of documents at word level. This paper presents a concept indexing algorithm, which adds ontology information to words and phrases and allows full text to be searched, browsed and analyzed at different levels of abstraction. This algorithm uses a general purpose ontology, OntoRo, and an ontologically tagged corpus, OntoCorp, both developed for the purpose of this research. OntoRo and OntoCorp are used in a two-stage supervised machine learning process aimed at generating ontology tagging rules. The first experimental tests show a tagging accuracy of 78.91% which is encouraging in terms of the further improvement of the algorithm.Keywords: Concepts, indexing, machine learning, ontology, tagging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16782983 An Approach of Control System for Automated Storage and Retrieval System (AS/RS)
Authors: M. Soyaslan, A. Fenercioglu, C. Kozkurt
Abstract:
Automated storage and retrieval systems (AS/RS) become frequently used systems in warehouses. There has been a transition from human based forklift applications to fast and safe AS/RS applications in firm-s warehouse systems. In this study, basic components and automation systems of the AS/RS are examined. Proposed system's automation components and their tasks in the system control algorithm were stated. According to this control algorithm the control system structure was obtained.Keywords: AS/RS, Automatic Storage and Retrieval System, Warehouse Control System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35252982 Implementation of RSA Blind Signature on CryptO-0N2 Protocol
Authors: Esti Rahmawati Agustina, Is Esti Firmanesa
Abstract:
Blind Signature were introduced by Chaum. In this scheme, a signer can “sign” a document without knowing the document contain. This is particularly important in electronic voting. CryptO-0N2 is an electronic voting protocol which is development of CryptO-0N. During its development this protocol has not been furnished with the requirement of blind signature, so the choice of voters can be determined by counting center. In this paper will be presented of implementation of blind signature using RSA algorithm.
Keywords: Blind signature, electronic voting protocol, RSA algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31922981 Role of Feedbacks in Simulation-Based Learning
Authors: Usman Ghani
Abstract:
Feedback is a vital element for improving student learning in a simulation-based training as it guides and refines learning through scaffolding. A number of studies in literature have shown that students’ learning is enhanced when feedback is provided with personalized tutoring that offers specific guidance and adapts feedback to the learner in a one-to-one environment. Thus, emulating these adaptive aspects of human tutoring in simulation provides an effective methodology to train individuals. This paper presents the results of a study that investigated the effectiveness of automating different types of feedback techniques such as Knowledge-of-Correct-Response (KCR) and Answer-Until- Correct (AUC) in software simulation for learning basic information technology concepts. For the purpose of comparison, techniques like simulation with zero or no-feedback (NFB) and traditional hands-on (HON) learning environments are also examined. The paper presents the summary of findings based on quantitative analyses which reveal that the simulation based instructional strategies are at least as effective as hands-on teaching methodologies for the purpose of learning of IT concepts. The paper also compares the results of the study with the earlier studies and recommends strategies for using feedback mechanism to improve students’ learning in designing and simulation-based IT training.Keywords: Simulation, feedback, training, hands-on, labs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15702980 Knowledge Management as Tool for Environmental Management System Implementation in Higher Education Institutions
Authors: Natalia Marulanda Grisales
Abstract:
The most significant changes in the characteristics of consumers have contributed to the development and adoption of methodologies and tools that enable organizations to be more competitive in the marketplace. One of these methodologies is the integration of Knowledge Management (KM) phases and Environmental Management Systems (EMS). This integration allows companies to manage and share the required knowledge for EMS adoption, from the place where it is generated to the place where it is going to be exploited. The aim of this paper is to identify the relationship between KM phases as a tool for the adoption of EMS in HEI. The methodology has a descriptive scope and a qualitative approach. It is based on a case study and a review of the literature about KM and EMS. We conducted 266 surveys to students, professors and staff at Minuto de Dios University (Colombia). Data derived from the study indicate that if a HEI wants to achieve an adequate knowledge acquisition and knowledge transfer, it must have clear goals for implementing an EMS. Also, HEI should create empowerment and training spaces for students, professors and staff. In the case study, HEI must generate alternatives that enhance spaces of knowledge appropriation. It was found that 85% of respondents have not received any training from HEI about EMS. 88% of respondents believe that the actions taken by the university are not efficient to knowledge transfer in order to develop an EMS.Keywords: Environmental management systems, higher education institutions, knowledge management. training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14102979 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.
Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12332978 Induction Motor Efficiency Estimation using Genetic Algorithm
Authors: Khalil Banan, Mohammad B.B. Sharifian, Jafar Mohammadi
Abstract:
Due to the high percentage of induction motors in industrial market, there exist a large opportunity for energy savings. Replacement of working induction motors with more efficient ones can be an important resource for energy savings. A calculation of energy savings and payback periods, as a result of such a replacement, based on nameplate motor efficiency or manufacture-s data can lead to large errors [1]. Efficiency of induction motors (IMs) can be extracted using some procedures that use the no-load test results. In the cases that we must estimate the efficiency on-line, some of these procedures can-t be efficient. In some cases the efficiency estimates using the rating values of the motor, but these procedures can have errors due to the different working condition of the motor. In this paper the efficiency of an IM estimated by using the genetic algorithm. The results are compared with the measured values of the torque and power. The results show smaller errors for this procedure compared with the conventional classical procedures, hence the cost of the equipments is reduced and on-line estimation of the efficiency can be made.
Keywords: Genetic algorithm, induction motor, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26032977 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements
Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath
Abstract:
Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.Keywords: Pronunciation variations, dynamic programming, machine learning, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8002976 Fault Localization and Alarm Correlation in Optical WDM Networks
Authors: G. Ramesh, S. Sundara Vadivelu
Abstract:
For several high speed networks, providing resilience against failures is an essential requirement. The main feature for designing next generation optical networks is protecting and restoring high capacity WDM networks from the failures. Quick detection, identification and restoration make networks more strong and consistent even though the failures cannot be avoided. Hence, it is necessary to develop fast, efficient and dependable fault localization or detection mechanisms. In this paper we propose a new fault localization algorithm for WDM networks which can identify the location of a failure on a failed lightpath. Our algorithm detects the failed connection and then attempts to reroute data stream through an alternate path. In addition to this, we develop an algorithm to analyze the information of the alarms generated by the components of an optical network, in the presence of a fault. It uses the alarm correlation in order to reduce the list of suspected components shown to the network operators. By our simulation results, we show that our proposed algorithms achieve less blocking probability and delay while getting higher throughput.
Keywords: Alarm correlation, blocking probability, delay, fault localization, WDM networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20682975 An Algorithm for Preventing the Irregular Operation Modes of the Drive Synchronous Motor Providing the Ore Grinding
Authors: Baghdasaryan Marinka
Abstract:
The current scientific and engineering interest concerning the problems of preventing the emergency manifestations of drive synchronous motors, ensuring the ore grinding technological process has been justified. The analysis of the known works devoted to the abnormal operation modes of synchronous motors and possibilities of protection against them, has shown that their application is inexpedient for preventing the impermissible displays arising in the electrical drive synchronous motors ensuring the ore-grinding process. The main energy and technological factors affecting the technical condition of synchronous motors are evaluated. An algorithm for preventing the irregular operation modes of the electrical drive synchronous motor applied in the ore-grinding technological process has been developed and proposed for further application which gives an opportunity to provide smart solutions, ensuring the safe operation of the drive synchronous motor by a comprehensive consideration of the energy and technological factors.Keywords: Synchronous motor, abnormal operating mode, electric drive, algorithm, energy factor, technological factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5632974 2D-Modeling with Lego Mindstorms
Authors: Miroslav Popelka, Jakub Nožička
Abstract:
The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.
Keywords: LEGO Mindstorms, ultrasonic sensor, Real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3109