Search results for: Process Models.
6244 WEMax: Virtual Manned Assembly Line Generation
Authors: Won Kyung Ham, Kang Hoon Cho, Yongho Chung, Sang C. Park
Abstract:
Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.
Keywords: Performance Forecasting, Simulation, Virtual Manned Assembly Line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18986243 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5946242 Coverage Probability Analysis of WiMAX Network under Additive White Gaussian Noise and Predicted Empirical Path Loss Model
Authors: Chaudhuri Manoj Kumar Swain, Susmita Das
Abstract:
This paper explores a detailed procedure of predicting a path loss (PL) model and its application in estimating the coverage probability in a WiMAX network. For this a hybrid approach is followed in predicting an empirical PL model of a 2.65 GHz WiMAX network deployed in a suburban environment. Data collection, statistical analysis, and regression analysis are the phases of operations incorporated in this approach and the importance of each of these phases has been discussed properly. The procedure of collecting data such as received signal strength indicator (RSSI) through experimental set up is demonstrated. From the collected data set, empirical PL and RSSI models are predicted with regression technique. Furthermore, with the aid of the predicted PL model, essential parameters such as PL exponent as well as the coverage probability of the network are evaluated. This research work may assist in the process of deployment and optimisation of any cellular network significantly.
Keywords: WiMAX, RSSI, path loss, coverage probability, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7066241 Innovation, e-Learning and Higher Education: An Example of a University- LMS Adoption Process
Authors: Ana Mafalda Gonçalves, Neuza Pedro
Abstract:
The evolution of ICT has changed all sections of society and these changes have been creating an irreversible impact on higher education institutions, which are expected to adopt innovative technologies in their teaching practices. As theorical framework this study select Rogers theory of innovation diffusion which is widely used to illustrate how technologies move from a localized invented to a widespread evolution on organizational practices. Based on descriptive statistical data collected in a European higher education institution three years longitudinal study was conducted for analyzing and discussion the different stages of a LMS adoption process. Results show that ICT integration in higher education is not progressively successful and a linear process and multiple aspects must be taken into account.
Keywords: e-learning, higher education, LMS, innovation, technologies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24696240 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.
Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4496239 Predictions of Values in a Causticizing Process
Authors: R. Andreola, O. A. A. Santos, L. M. M, Jorge
Abstract:
An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papéis, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.Keywords: Causticizing, lime, prediction, process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18766238 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process
Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek
Abstract:
It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.
Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23986237 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas
Abstract:
This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.
Keywords: Biomass concentration, Extended Kalman Filter, Particle Filter, State estimation, Specific growth rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29536236 Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method
Authors: J. Satonsaowapak, M. Krapeedang, R. Oonsivilai, A. Oonsivilai
Abstract:
The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.Keywords: Gasified System, Identification, Response SurfaceMethod
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12476235 Assessment of the Influence of External Earth Terrain at Construction of the Physicmathematical Models or Finding the Dynamics of Pollutants' Distribution in Urban Atmosphere
Authors: Stanislav Aryeh V. Fradkin, Sharif E.Guseynov
Abstract:
There is a complex situation on the transport environment in the cities of the world. For the analysis and prevention of environmental problems an accurate calculation hazardous substances concentrations at each point of the investigated area is required. In the turbulent atmosphere of the city the wellknown methods of mathematical statistics for these tasks cannot be applied with a satisfactory level of accuracy. Therefore, to solve this class of problems apparatus of mathematical physics is more appropriate. In such models, because of the difficulty as a rule the influence of uneven land surface on streams of air masses in the turbulent atmosphere of the city are not taken into account. In this paper the influence of the surface roughness, which can be quite large, is mathematically shown. The analysis of this problem under certain conditions identified the possibility of areas appearing in the atmosphere with pressure tending to infinity, i.e. so-called "wall effect".
Keywords: Air pollution, concentration of harmful substances, physical-mathematical model, urban area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13436234 Developing Online Bookstore to Facilitate Manual Process – UTP Case Study
Authors: Emelia Akashah P.A, Sharifah Nadiah S.A
Abstract:
Knowledge sharing enables the information or knowledge to be transmitted from one source to another. This paper demonstrates the needs of having the online book catalogue which can be used to facilitate disseminating information on textbook used in the university. This project is aimed to give access to the students and lecturers to the list of books in the bookstore and at the same time to allow book reviewing without having to visit the bookstore physically. Research is carried out according to the boundaries which accounts to current process of new book purchasing, current system used by the bookstore and current process the lecturers go through for reviewing textbooks. The questionnaire is used to gather the requirements and it is distributed to 100 students and 40 lecturers. This project has enabled the improvement of a manual process to be carried out automatically, through a web based platform. It is shown based on the user acceptance survey carried out that target groups found that this web service is feasible to be implemented in Universiti Teknologi PETRONAS (UTP), and they have shown positive signs of interest in utilizing it in the future.Keywords: bookstore, knowledge sharing, online bookcatalogue, textbook
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42506233 Optimisation of Polycyclic AromaticHydrocarbon Removal from Contaminated Soilusing Modified Fenton Treatment
Authors: Venny, S. Gan, H. K. Ng
Abstract:
The performance of modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soil was investigated in packed soil column with a hydrogen peroxide (H2O2) delivery system simulating in situ injection. Soil samples were spiked with phenanthrene (low molecular weight PAH) and fluoranthene (high molecular weight PAH) to an initial concentration of 500 mg/kg dried soil each. The effectiveness of process parameters H2O2/soil, iron/soil, chelating agent/soil weight ratios and reaction time were studied using a 24 three level factorial design experiments. Statistically significant quadratic models were developed using Response Surface Methodology (RSM) for degrading PAHs from the soil samples. Optimum operating condition was achieved at mild range of H2O2/soil, iron/soil and chelating agent/soil weight ratios, indicating cost efficient method for treating highly contaminated lands.Keywords: Fenton, polycyclic aromatic hydrocarbon, chelate, response surface methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17136232 Model Based Monitoring Using Integrated Data Validation, Simulation and Parameter Estimation
Authors: Reza Hayati, Maryam Sadi, Saeid Shokri, Mehdi Ahmadi Marvast, Saeid Hassan Boroojerdi, Amin Hamzavi Abedi
Abstract:
Efficient and safe plant operation can only be achieved if the operators are able to monitor all key process parameters. Instrumentation is used to measure many process variables, like temperatures, pressures, flow rates, compositions or other product properties. Therefore Performance monitoring is a suitable tool for operators. In this paper, we integrate rigorous simulation model, data reconciliation and parameter estimation to monitor process equipments and determine key performance indicator (KPI) of them. The applied method here has been implemented in two case studies.Keywords: Data Reconciliation, Measurement, Optimization, Parameter Estimation, Performance Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20886231 Importance of Risk Assessment in Managers´ Decision-Making Process
Authors: Mária Hudáková, Vladimír Míka, Katarína Hollá
Abstract:
Making decisions is the core of management and a result of conscious activities which is under way in a particular environment and concrete conditions. The managers decide about the goals, procedures and about the methods how to respond to the changes and to the problems which developed. Their decisions affect the effectiveness, quality, economy and the overall successfulness in every organisation. In spite of this fact, they do not pay sufficient attention to the individual steps of the decision-making process. They emphasise more how to cope with the individual methods and techniques of making decisions and forget about the way how to cope with analysing the problem or assessing the individual solution variants. In many cases, the underestimating of the analytical phase can lead to an incorrect assessment of the problem and this can then negatively influence its further solution. Based on our analysis of the theoretical solutions by individual authors who are dealing with this area and the realised research in Slovakia and also abroad we can recognise an insufficient interest of the managers to assess the risks in the decision-making process. The goal of this paper is to assess the risks in the managers´ decision-making process relating to the conditions of the environment, to the subject’s activity (the manager’s personality), to the insufficient assessment of individual variants for solving the problems but also to situations when the arisen problem is not solved. The benefit of this paper is the effort to increase the need of the managers to deal with the risks during the decision-making process. It is important for every manager to assess the risks in his/her decision-making process and to make efforts to take such decisions which reflect the basic conditions, states and development of the environment in the best way and especially for the managers´ decisions to contribute to achieving the determined goals of the organisation as effectively as possible.
Keywords: Risk, decision-making, manager, process, analysis, source of risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17996230 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.
Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486229 Gravitational Frequency Shifts for Photons and Particles
Authors: Jing-Gang Xie
Abstract:
The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.
Keywords: General relativity theory, particles, photons, quantum gravity model, gravitational frequency shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22286228 A Virtual Reality Laboratory for Distance Education in Chemistry
Authors: J. Georgiou, K. Dimitropoulos, A. Manitsaris
Abstract:
Simulations play a major role in education not only because they provide realistic models with which students can interact to acquire real world experiences, but also because they constitute safe environments in which students can repeat processes without any risk in order to perceive easier concepts and theories. Virtual reality is widely recognized as a significant technological advance that can facilitate learning process through the development of highly realistic 3D simulations supporting immersive and interactive features. The objective of this paper is to analyze the influence of virtual reality-s use in chemistry instruction as well as to present an integrated web-based learning environment for the simulation of chemical experiments. The proposed application constitutes a cost-effective solution for both schools and universities without appropriate infrastructure and a valuable tool for distance learning and life-long education in chemistry. Its educational objectives are the familiarization of students with the equipment of a real chemical laboratory and the execution of virtual volumetric analysis experiments with the active participation of students.
Keywords: Chemistry, simulations, experiments, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28066227 3D CAD Models and its Feature Similarity
Authors: Elmi Abu Bakar, Tetsuo Miyake, Zhong Zhang, Takashi Imamura
Abstract:
Knowing the geometrical object pose of products in manufacturing line before robot manipulation is required and less time consuming for overall shape measurement. In order to perform it, the information of shape representation and matching of objects is become required. Objects are compared with its descriptor that conceptually subtracted from each other to form scalar metric. When the metric value is smaller, the object is considered closed to each other. Rotating the object from static pose in some direction introduce the change of value in scalar metric value of boundary information after feature extraction of related object. In this paper, a proposal method for indexing technique for retrieval of 3D geometrical models based on similarity between boundaries shapes in order to measure 3D CAD object pose using object shape feature matching for Computer Aided Testing (CAT) system in production line is proposed. In experimental results shows the effectiveness of proposed method.
Keywords: CAD, rendering, feature extraction, feature classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19796226 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies
Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov
Abstract:
Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.
Keywords: Business processes, discrete-event simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15646225 Towards an Effective Reputation Assessment Process in Peer-to-Peer Systems
Authors: Farag Azzedin, Ahmad Ridha
Abstract:
The need for reputation assessment is particularly strong in peer-to-peer (P2P) systems because the peers' personal site autonomy is amplified by the inherent technological decentralization of the environment. However, the decentralization notion makes the problem of designing a peer-to-peer based reputation assessment substantially harder in P2P networks than in centralized settings.Existing reputation systems tackle the reputation assessment process in an ad-hoc manner. There is no systematic and coherent way to derive measures and analyze the current reputation systems. In this paper, we propose a reputation assessment process and use it to classify the existing reputation systems. Simulation experiments are conducted and focused on the different methods in selecting the recommendation sources and retrieving the recommendations. These two phases can contribute significantly to the overall performance due to communication cost and coverage.
Keywords: P2P Systems, Trust, Reputation, Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14436224 Infrastructure Planning in Scania a Discourse Analytical Approach to the Concepts of Regional Development and Sustainability in the Planning Process
Authors: Fredrik Pettersson
Abstract:
The paper applies a discourse analytical approach to investigate important concepts influencing the infrastructure planning process in the region of Scania in southern Sweden. Two discourses, one concerning regional development and one concerning sustainability are identified, discussed and contrasted. It is argued that the perceptions of problems and their suggested solutions related to transportation are based on specific ideas, in turn dependent on the importance given to certain concepts, such as regional enlargement, Scania as a transit region, the national environmental quality goals and regional attractiveness. These concepts, their underlying meaning structures and their relevance for the infrastructure planning process are analyzed. The handling of conflicting interests in the planning process, and the possible implications this may have is also discussed. The results indicate that the regional development discourse is dominant and although the solutions to the problems caused by transport are framed in similar ways in the two discourses a harmonization between conflicting goals is proving difficult to achieve.
Keywords: Discourse analysis, Infrastructure planning, Regional development, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14946223 Mathematical Modeling Experimental Approach of the Friction on the Tool-Chip Interface of Multicoated Carbide Turning Inserts
Authors: Samy E. Oraby, Ayman M. Alaskari
Abstract:
The importance of machining process in today-s industry requires the establishment of more practical approaches to clearly represent the intimate and severe contact on the tool-chipworkpiece interfaces. Mathematical models are developed using the measured force signals to relate each of the tool-chip friction components on the rake face to the operating cutting parameters in rough turning operation using multilayers coated carbide inserts. Nonlinear modeling proved to have high capability to detect the nonlinear functional variability embedded in the experimental data. While feedrate is found to be the most influential parameter on the friction coefficient and its related force components, both cutting speed and depth of cut are found to have slight influence. Greater deformed chip thickness is found to lower the value of friction coefficient as the sliding length on the tool-chip interface is reduced.Keywords: Mathematical modeling, Cutting forces, Frictionforces, Friction coefficient and Chip ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31256222 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique
Authors: Mandeep Kumar, Hari Singh
Abstract:
The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.
Keywords: ANOVA, DOE, inconel, machining, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14216221 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.
Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17586220 Scientific Workflow Interoperability Evaluation
Authors: Ahmed Alqaoud
Abstract:
There is wide range of scientific workflow systems today, each one designed to resolve problems at a specific level. In large collaborative projects, it is often necessary to recognize the heterogeneous workflow systems already in use by various partners and any potential collaboration between these systems requires workflow interoperability. Publish/Subscribe Scientific Workflow Interoperability Framework (PS-SWIF) approach was proposed to achieve workflow interoperability among workflow systems. This paper evaluates the PS-SWIF approach and its system to achieve workflow interoperability using Web Services with asynchronous notification messages represented by WS-Eventing standard. This experiment covers different types of communication models provided by Workflow Management Coalition (WfMC). These models are: Chained processes, Nested synchronous sub-processes, Event synchronous sub-processes, and Nested sub-processes (Polling/Deferred Synchronous). Also, this experiment shows the flexibility and simplicity of the PS-SWIF approach when applied to a variety of workflow systems (Triana, Taverna, Kepler) in local and remote environments.Keywords: Publish/subscribe, scientific workflow, web services, workflow interoperability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18226219 Evaluation of Medication Administration Process in a Paediatric Ward
Authors: Zayed N. Alsulami, Asma F. Aldosseri, Ahmed S. Ezziden, Abdulrahman K. Alonazi
Abstract:
Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding to the medication administration process should be improved.
Keywords: Double checking, Medication administration errors, Medication safety, Nurses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28206218 Validity Domains of Beams Behavioural Models: Efficiency and Reduction with Artificial Neural Networks
Authors: Keny Ordaz-Hernandez, Xavier Fischer, Fouad Bennis
Abstract:
In a particular case of behavioural model reduction by ANNs, a validity domain shortening has been found. In mechanics, as in other domains, the notion of validity domain allows the engineer to choose a valid model for a particular analysis or simulation. In the study of mechanical behaviour for a cantilever beam (using linear and non-linear models), Multi-Layer Perceptron (MLP) Backpropagation (BP) networks have been applied as model reduction technique. This reduced model is constructed to be more efficient than the non-reduced model. Within a less extended domain, the ANN reduced model estimates correctly the non-linear response, with a lower computational cost. It has been found that the neural network model is not able to approximate the linear behaviour while it does approximate the non-linear behaviour very well. The details of the case are provided with an example of the cantilever beam behaviour modelling.
Keywords: artificial neural network, validity domain, cantileverbeam, non-linear behaviour, model reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14286217 Assessment of Landslide Volume for Alishan Highway Based On Database of Rainfall-Induced Slope Failure
Authors: Yun-Yao Chi, Ya-Fen Lee
Abstract:
In this paper, a study of slope failures along the Alishan Highway is carried out. An innovative empirical model is developed based on 15-year records of rainfall-induced slope failures. The statistical models are intended for assessing the volume of landslide for slope failure along the Alishan Highway in the future. The rainfall data considered in the proposed models include the effective cumulative rainfall and the critical rainfall intensity. The effective cumulative rainfall is defined at the point when the curve of cumulative rainfall goes from steep to flat. Then, the rainfall thresholds of landslide are established for assessing the volume of landslide and issuing warning and/or closure for the Alishan Highway during a future extreme rainfall. Slope failures during Typhoon Saola in 2012 demonstrate that the new empirical model is effective and applicable to other cases with similar rainfall conditions.
Keywords: Slope failure, landslide, volume, model, rainfall thresholds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17726216 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease
Authors: Elizabeth Stojanovski
Abstract:
Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location, and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance and within study variance, and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.
Keywords: Random-effects, meta-analysis, Bayesian, variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6596215 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting
Authors: Analise Borg, Paul Micallef
Abstract:
Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organise the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that nonparametric analysis offer potential results as the ones mentioned in the literature.
Keywords: Audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285