Search results for: Hybrid Evolutionary Algorithm
2878 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication
Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi
Abstract:
Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.
Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7892877 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines
Authors: Mustafa Sahin, İlkay Yavrucuk
Abstract:
This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.
Keywords: Adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7012876 Motor Imagery Signal Classification for a Four State Brain Machine Interface
Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan
Abstract:
Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification
Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24622875 Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom
Abstract:
Nowadays the promotion of the public transportation system in the Bangkok Metropolitan Area is increased such as the “Free Bus for Thai Citizen” Campaign and the prospect of the several MRT routes to increase the convenient and comfortable to the Bangkok Metropolitan area citizens. But citizens do not make full use of them it because the citizens are lack of the data and information and also the confident to the public transportation system of Thailand especially in the time and safety aspects. This research is the Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area by focusing on buses, BTS and MRT schedules/routes to give the most information to passengers. They can choose the way and the routes easily by using Dijkstra STAR Algorithm of Graph Theory which also shows the fare of the trip. This Application was evaluated by 30 normal users to find the mean and standard deviation of the developed system. Results of the evaluation showed that system is at a good level of satisfaction (4.20 and 0.40). From these results we can conclude that the system can be used properly and effectively according to the objective.
Keywords: Dijkstra Algorithm, Graph Theory, Shortest Route, Public Transport, Bangkok Metropolitan Area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63472874 Model Predictive Fuzzy Control of Air-ratio for Automotive Engines
Authors: Hang-cheong Wong, Pak-kin Wong, Chi-man Vong, Zhengchao Xie, Shaojia Huang
Abstract:
Automotive engine air-ratio plays an important role of emissions and fuel consumption reduction while maintains satisfactory engine power among all of the engine control variables. In order to effectively control the air-ratio, this paper presents a model predictive fuzzy control algorithm based on online least-squares support vector machines prediction model and fuzzy logic optimizer. The proposed control algorithm was also implemented on a real car for testing and the results are highly satisfactory. Experimental results show that the proposed control algorithm can regulate the engine air-ratio to the stoichiometric value, 1.0, under external disturbance with less than 5% tolerance.Keywords: Air-ratio, Fuzzy logic, online least-squares support vector machine, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18172873 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network
Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem
Abstract:
In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.Keywords: Ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17922872 Economic Assessment of Green House for Cultivation of Float Based Seedling Production in India
Authors: Srinath Ramakkrushnan, Aswathaman Vijayan
Abstract:
In conventional seedling production, the seedlings are being grown in the open field under natural conditions. Here they are susceptible to sudden changes in climate were their quality and yield is affected. Quality seedlings are essential for good growth and performance of crops in main field; they serve as a foundation for the economic returns to the farmer. Producing quality seedling demands usage of hybrid seeds as they have the ability to result in better yield, greater uniformity, improved color, disease resistance, and so forth. Hybrid seed production poses major operational challenge and its seed use efficiency plays an important role. Thus in order to overcome the difficulties currently present in conventional seedling production and to efficiently use hybrid seeds, ITC Limited Agri Business Divisions - Sustainability Cell as conceptualized a novel method of seedling production unit for farmers in West Godavari District of Andhra Pradesh. The “Green House based Float Seedling" methodology aims at a protected cultivation technique wherein the micro climate surrounding the plant/seedling body is controlled partially or fully as per the requirement of the species. This paper reports on the techno economic evaluation of green house for cultivation of float based seedling production with experimental results that was attained from the pilot implementation in West Godavari District, Rajahmundry region of India.Keywords: Economic Assessment, Float Seedling, Green House, ITC Limited, Payback period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42102871 TFRank: An Evaluation of Users Importance with Fractal Views in Social Networks
Abstract:
One of research issues in social network analysis is to evaluate the position/importance of users in social networks. As the information diffusion in social network is evolving, it seems difficult to evaluate the importance of users using traditional approaches. In this paper, we propose an evaluation approach for user importance with fractal view in social networks. In this approach, the global importance (Fractal Importance) and the local importance (Topological Importance) of nodes are considered. The basic idea is that the bigger the product of fractal importance and topological importance of a node is, the more important of the node is. We devise the algorithm called TFRank corresponding to the proposed approach. Finally, we evaluate TFRank by experiments. Experimental results demonstrate our TFRank has the high correlations with PageRank algorithm and potential ranking algorithm, and it shows the effectiveness and advantages of our approach.Keywords: TFRank, Fractal Importance, Topological Importance, Social Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15232870 Orchestra/Percussion Classification Algorithm for United Speech Audio Coding System
Authors: Yueming Wang, Rendong Ying, Sumxin Jiang, Peilin Liu
Abstract:
Unified Speech Audio Coding (USAC), the latest MPEG standardization for unified speech and audio coding, uses a speech/audio classification algorithm to distinguish speech and audio segments of the input signal. The quality of the recovered audio can be increased by well-designed orchestra/percussion classification and subsequent processing. However, owing to the shortcoming of the system, introducing an orchestra/percussion classification and modifying subsequent processing can enormously increase the quality of the recovered audio. This paper proposes an orchestra/percussion classification algorithm for the USAC system which only extracts 3 scales of Mel-Frequency Cepstral Coefficients (MFCCs) rather than traditional 13 scales of MFCCs and use Iterative Dichotomiser 3 (ID3) Decision Tree rather than other complex learning method, thus the proposed algorithm has lower computing complexity than most existing algorithms. Considering that frequent changing of attributes may lead to quality loss of the recovered audio signal, this paper also design a modified subsequent process to help the whole classification system reach an accurate rate as high as 97% which is comparable to classical 99%.
Keywords: ID3 Decision Tree, MFCC, Orchestra/Percussion Classification, USAC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16792869 Field and Petrographic Relationships between the Charnockitic and Associated Granitic Rock, Akure Area, Southwestern Nigeria
Authors: Ademeso, Odunyemi Anthony
Abstract:
The charnockitic and associated granitic rocks of Akure area were studied for their field and petrographic relationship's. The outcrops locations were plotted in Surfer 8. The granitic rock exhibits a porphyritic texture and outcrops in the north-eastern side of the study area while the charnockitics outcrop in the central/western part. An essentially dark coloured and fine grained intrusive exhibiting xenoliths and xenocrysts (plagioclase phenocrysts) of the granite outcrops between the granitic and charnockitic rocks. Mineralogically, the central rock combines the content of the other two indicating that it is most likely a product of their hybridization. The charnockitic magma is believed to have intruded and assimilated the granite substantially thereby contaminating itself and consequently emplacing the hybrid. The presented model of emplacement elucidates the hybridization proposal. Conclusively, the charnockitics are believed to be (a) younger than the granite, (b) of Pan-African age and (c) of igneous origin.
Keywords: Charnockitic rock, Hybrid rock, ImageJ, Xenocryst
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30242868 Optimal Straight Line Trajectory Generation in 3D Space using Deviation Algorithm
Authors: T. C. Manjunath, C. Ardil
Abstract:
This paper presents an efficient method of obtaining a straight-line motion in the tool configuration space using an articulated robot between two specified points. The simulation results & the implementation results show the effectiveness of the method.Keywords: Bounded deviation algorithm, Straight line motion, Tool configuration space, Joint space, TCV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26252867 Novel Approach for Promoting the Generalization Ability of Neural Networks
Authors: Naiqin Feng, Fang Wang, Yuhui Qiu
Abstract:
A new approach to promote the generalization ability of neural networks is presented. It is based on the point of view of fuzzy theory. This approach is implemented through shrinking or magnifying the input vector, thereby reducing the difference between training set and testing set. It is called “shrinking-magnifying approach" (SMA). At the same time, a new algorithm; α-algorithm is presented to find out the appropriate shrinking-magnifying-factor (SMF) α and obtain better generalization ability of neural networks. Quite a few simulation experiments serve to study the effect of SMA and α-algorithm. The experiment results are discussed in detail, and the function principle of SMA is analyzed in theory. The results of experiments and analyses show that the new approach is not only simpler and easier, but also is very effective to many neural networks and many classification problems. In our experiments, the proportions promoting the generalization ability of neural networks have even reached 90%.Keywords: Fuzzy theory, generalization, misclassification rate, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15392866 Courses Pre-Required Visualization Using Force Directed Placement Technique
Authors: Imen Ammari, Mourad Elloumi, Ala Eddine Barouni
Abstract:
Visualizing “Courses – Pre – Required - Architecture" on the screen has proven to be useful and helpful for university actors and specially for students. In fact, these students can easily identify courses and their pre required, perceive the courses to follow in the future, and then can choose rapidly the appropriate course to register in. Given a set of courses and their prerequired, we present an algorithm for visualization a graph entitled “Courses-Pre-Required-Graph" that present courses and their prerequired in order to help students to recognize, lonely, what courses to take in the future and perceive the contain of all courses that they will study. Our algorithm using “Force Directed Placement" technique visualizes the “Courses-Pre-Required-Graph" in such way that courses are easily identifiable. The time complexity of our drawing algorithm is O (n2), where n is the number of courses in the “Courses-Pre-Required-Graph".Keywords: Courses–Pre-Required-Architecture, Courses-Pre- Required-Graph, Courses-Pre-Required-Visualization, Force directed Placement, Resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13292865 The Algorithm of Semi-Automatic Thai Spoonerism Words for Bi-Syllable
Authors: Nutthapat Kaewrattanapat, Wannarat Bunchongkien
Abstract:
The purposes of this research are to study and develop the algorithm of Thai spoonerism words by semi-automatic computer programs, that is to say, in part of data input, syllables are already separated and in part of spoonerism, the developed algorithm is utilized, which can establish rules and mechanisms in Thai spoonerism words for bi-syllables by utilizing analysis in elements of the syllables, namely cluster consonant, vowel, intonation mark and final consonant. From the study, it is found that bi-syllable Thai spoonerism has 1 case of spoonerism mechanism, namely transposition in value of vowel, intonation mark and consonant of both 2 syllables but keeping consonant value and cluster word (if any). From the study, the rules and mechanisms in Thai spoonerism word were applied to develop as Thai spoonerism word software, utilizing PHP program. the software was brought to conduct a performance test on software execution; it is found that the program performs bi-syllable Thai spoonerism correctly or 99% of all words used in the test and found faults on the program at 1% as the words obtained from spoonerism may not be spelling in conformity with Thai grammar and the answer in Thai spoonerism could be more than 1 answer.
Keywords: Algorithm, Spoonerism, Computational Linguistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23702864 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game
Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha
Abstract:
Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11722863 Improved Ant Colony Optimization for Solving Reliability Redundancy Allocation Problems
Authors: Phakhapong Thanitakul, Worawat Sa-ngiamvibool, Apinan Aurasopon, Saravuth Pothiya
Abstract:
This paper presents an improved ant colony optimization (IACO) for solving the reliability redundancy allocation problem (RAP) in order to maximize system reliability. To improve the performance of ACO algorithm, two additional techniques, i.e. neighborhood search, and re-initialization process are presented. To show its efficiency and effectiveness, the proposed IACO is applied to solve three RAPs. Additionally, the results of the proposed IACO are compared with those of the conventional heuristic approaches i.e. genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). The experimental results show that the proposed IACO approach is comparatively capable of obtaining higher quality solution and faster computational time.
Keywords: Ant colony optimization, Heuristic algorithm, Mixed-integer nonlinear programming, Redundancy allocation problem, Reliability optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20982862 Direction of Arrival Estimation Based on a Single Port Smart Antenna Using MUSIC Algorithm with Periodic Signals
Authors: Chen Sun, Nemai Chandra Karmakar
Abstract:
A novel direction-of-arrival (DOA) estimation technique, which uses a conventional multiple signal classification (MUSIC) algorithm with periodic signals, is applied to a single RF-port parasitic array antenna for direction finding. Simulation results show that the proposed method gives high resolution (1 degree) DOA estimation in an uncorrelated signal environment. The novelty lies in that the MUSIC algorithm is applied to a simplified antenna configuration. Only one RF port and one analogue-to-digital converter (ADC) are used in this antenna, which features low DC power consumption, low cost, and ease of fabrication. Modifications to the conventional MUSIC algorithm do not bring much additional complexity. The proposed technique is also free from the negative influence by the mutual coupling between elements. Therefore, the technique has great potential to be implemented into the existing wireless mobile communications systems, especially at the power consumption limited mobile terminals, to provide additional position location (PL) services.
Keywords: Direction-of-arrival (DOA) estimation, electronically steerable parasitic array radiator (ESPAR), multiple single classifications (MUSIC), position location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30002861 Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs
Authors: Z.Farhadpour, Mohammad.R.Meybodi
Abstract:
A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.Keywords: Learning automata, routing, algorithm, sparse graph
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13632860 Forecasting Fraudulent Financial Statements using Data Mining
Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas
Abstract:
This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.Keywords: Machine learning, stacking, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30652859 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.
Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12952858 A State Aggregation Approach to Singularly Perturbed Markov Reward Processes
Authors: Dali Zhang, Baoqun Yin, Hongsheng Xi
Abstract:
In this paper, we propose a single sample path based algorithm with state aggregation to optimize the average rewards of singularly perturbed Markov reward processes (SPMRPs) with a large scale state spaces. It is assumed that such a reward process depend on a set of parameters. Differing from the other kinds of Markov chain, SPMRPs have their own hierarchical structure. Based on this special structure, our algorithm can alleviate the load in the optimization for performance. Moreover, our method can be applied on line because of its evolution with the sample path simulated. Compared with the original algorithm applied on these problems of general MRPs, a new gradient formula for average reward performance metric in SPMRPs is brought in, which will be proved in Appendix, and then based on these gradients, the schedule of the iteration algorithm is presented, which is based on a single sample path, and eventually a special case in which parameters only dominate the disturbance matrices will be analyzed, and a precise comparison with be displayed between our algorithm with the old ones which is aim to solve these problems in general Markov reward processes. When applied in SPMRPs, our method will approach a fast pace in these cases. Furthermore, to illustrate the practical value of SPMRPs, a simple example in multiple programming in computer systems will be listed and simulated. Corresponding to some practical model, physical meanings of SPMRPs in networks of queues will be clarified.Keywords: Singularly perturbed Markov processes, Gradient of average reward, Differential reward, State aggregation, Perturbed close network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412857 An Embedded System for Artificial Intelligence Applications
Authors: Ioannis P. Panagopoulos, Christos C. Pavlatos, George K. Papakonstantinou
Abstract:
Conventional approaches in the implementation of logic programming applications on embedded systems are solely of software nature. As a consequence, a compiler is needed that transforms the initial declarative logic program to its equivalent procedural one, to be programmed to the microprocessor. This approach increases the complexity of the final implementation and reduces the overall system's performance. On the contrary, presenting hardware implementations which are only capable of supporting logic programs prevents their use in applications where logic programs need to be intertwined with traditional procedural ones, for a specific application. We exploit HW/SW codesign methods to present a microprocessor, capable of supporting hybrid applications using both programming approaches. We take advantage of the close relationship between attribute grammar (AG) evaluation and knowledge engineering methods to present a programmable hardware parser that performs logic derivations and combine it with an extension of a conventional RISC microprocessor that performs the unification process to report the success or failure of those derivations. The extended RISC microprocessor is still capable of executing conventional procedural programs, thus hybrid applications can be implemented. The presented implementation is programmable, supports the execution of hybrid applications, increases the performance of logic derivations (experimental analysis yields an approximate 1000% increase in performance) and reduces the complexity of the final implemented code. The proposed hardware design is supported by a proposed extended C-language called C-AG.
Keywords: Attribute Grammars, Logic Programming, RISC microprocessor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50932856 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia
Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca
Abstract:
This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.Keywords: Transshipment model, mixed integer programming, saving algorithm, dry freight transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9232855 Design Optimization of Ferrocement-Laminated Plate Using Genetic Algorithm
Authors: M. Rokonuzzaman, Z. Gürdal
Abstract:
This paper describes the design optimization of ferrocement-laminated plate made up of reinforcing steel wire mesh(es) and cement mortar. For the improvement of the designing process, the plate is modeled as a multi-layer medium, dividing the ferrocement plate into layers of mortar and ferrocement. The mortar layers are assumed to be isotropic in nature and the ferrocement layers are assumed to be orthotropic. The ferrocement layers are little stiffer, but much more costlier, than the mortar layers due the presence of steel wire mesh. The optimization is performed for minimum weight design of the laminate using a genetic algorithm. The optimum designs are discussed for different plate configurations and loadings, and it is compared with the worst designs obtained at the final generation. The paper provides a procedure for the designers in decision-making process.
Keywords: Buckling, Ferrocement-Laminated Plate, Genetic Algorithm, Plate Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21962854 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems
Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.
Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15822853 AES and ECC Mixed for ZigBee Wireless Sensor Security
Authors: Saif Al-alak, Zuriati Ahmed, Azizol Abdullah, Shamala Subramiam
Abstract:
In this paper, we argue the security protocols of ZigBee wireless sensor network in MAC layer. AES 128-bit encryption algorithm in CCM* mode is secure transferred data; however, AES-s secret key will be break within nearest future. Efficient public key algorithm, ECC has been mixed with AES to rescue the ZigBee wireless sensor from cipher text and replay attack. Also, the proposed protocol can parallelize the integrity function to increase system performance.Keywords: AES, ECC, Multi-level security, ZigBee
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33922852 Multi-VSS Scheme by Shifting Random Grids
Authors: Joy Jo-Yi Chang, Justie Su-Tzu Juan
Abstract:
Visual secret sharing (VSS) was proposed by Naor and Shamir in 1995. Visual secret sharing schemes encode a secret image into two or more share images, and single share image can’t obtain any information about the secret image. When superimposes the shares, it can restore the secret by human vision. Due to the traditional VSS have some problems like pixel expansion and the cost of sophisticated. And this method only can encode one secret image. The schemes of encrypting more secret images by random grids into two shares were proposed by Chen et al. in 2008. But when those restored secret images have much distortion, those schemes are almost limited in decoding. In the other words, if there is too much distortion, we can’t encrypt too much information. So, if we can adjust distortion to very small, we can encrypt more secret images. In this paper, four new algorithms which based on Chang et al.’s scheme be held in 2010 are proposed. First algorithm can adjust distortion to very small. Second algorithm distributes the distortion into two restored secret images. Third algorithm achieves no distortion for special secret images. Fourth algorithm encrypts three secret images, which not only retain the advantage of VSS but also improve on the problems of decoding.
Keywords: Visual cryptography, visual secret sharing, random grids, multiple, secret image sharing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15312851 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO
Authors: Youcef Bekakra, Djilani Ben attous
Abstract:
In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.
Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20202850 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks
Authors: Tripatjot S. Panag, J. S. Dhillon
Abstract:
The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.Keywords: Coverage, disjoint sets, heuristic, lifetime, scheduling, wireless sensor networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18462849 Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm
Authors: Ladan Darougaran, Hossein Shahinzadeh, Hajar Ghotb, Leila Ramezanpour
Abstract:
In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.
Keywords: Data aggregation, wireless sensor networks, energy efficiency, simulated annealing algorithm, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690