Search results for: market demand.
1740 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine
Authors: Karin Kandananond
Abstract:
The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30081739 Housing Loans Determinants before and during Financial Crisis
Authors: Josip Visković, Ana Rimac Smiljanić, Ines Ivić
Abstract:
Housing loans play an important role in CEE countries’ economies. This fact is based on their share in total loans to households and their importance for economic activity and growth in CEE countries. Therefore, it is important to find out key determinants of housing loans demand in these countries. The aim of this study is to research and analyze the determinants of the demand for housing loans in Croatia. In this regard, the effect of economic activity, loan terms and real estate prices were analyzed. Also, the aim of this study is to find out what motivates people to take housing loans. Therefore, primarily empirical study was conducted among the Croatian residents. The results show that demand for housing loans is positively affected by economic growth, higher personal income and flexible loan terms, while it is negatively affected by interest rate rise.
Keywords: CEE countries, Croatia, demand determinants, housing loans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22031738 Information Tree - Establishment of Lifestyle-Based IT Visual Model
Authors: Chiung-Hui Chen
Abstract:
Traditional service channel is losing its edge due to emerging service technology. To establish interaction with the clients, the service industry is using effective mechanism to give clients direct access to services with emerging technologies. Thus, as service science receives attention, special and unique consumption pattern evolves; henceforth, leading to new market mechanism and influencing attitudes toward life and consumption patterns. The market demand for customized services is thus valued due to the emphasis of personal value, and is gradually changing the demand and supply relationship in the traditional industry. In respect of interior design service, in the process of traditional interior design, a designer converts to a concrete form the concept generated from the ideas and needs dictated by a user (client), by using his/her professional knowledge and drawing tool. The final product is generated through iterations of communication and modification, which is a very time-consuming process. Although this process has been accelerated with the help of computer graphics software today, repeated discussions and confirmations with users are still required to complete the task. In consideration of what is addressed above a space user’s life model is analyzed with visualization technique to create an interaction system modeled after interior design knowledge. The space user document intuitively personal life experience in a model requirement chart, allowing a researcher to analyze interrelation between analysis documents, identify the logic and the substance of data conversion. The repeated data which is documented are then transformed into design information for reuse and sharing. A professional interior designer may sort out the correlation among user’s preference, life pattern and design specification, thus deciding the critical design elements in the process of service design.
Keywords: Information Design, Life Model-Based, Aesthetic Computing, Communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17181737 EU Socioeconomic Indicators and Car Market
Authors: Christina Babatsou, Efthimios Zervas
Abstract:
Since 2008 a new economic crisis is present is the entire planet. This crisis affects several domains of the economic but also of the social life. Consumption decreases due to the lack of necessary resources of households to increase their expenditures. The car manufacturing is one of the main industrial activities in European Union (EU) and the present crisis particularly affects it. The present study examines the correlations between several socio-economic indicators and car market in European Union. The target is to find out the impact of the present economic crisis on the car market in EU.Keywords: European Union, Passenger cars, Social indicators, Correlations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16361736 Water Demand Prediction for Touristic Mecca City in Saudi Arabia using Neural Networks
Authors: Abdel Hamid Ajbar, Emad Ali
Abstract:
Saudi Arabia is an arid country which depends on costly desalination plants to satisfy the growing residential water demand. Prediction of water demand is usually a challenging task because the forecast model should consider variations in economic progress, climate conditions and population growth. The task is further complicated knowing that Mecca city is visited regularly by large numbers during specific months in the year due to religious occasions. In this paper, a neural networks model is proposed to handle the prediction of the monthly and yearly water demand for Mecca city, Saudi Arabia. The proposed model will be developed based on historic records of water production and estimated visitors- distribution. The driving variables for the model include annuallyvarying variables such as household income, household density, and city population, and monthly-varying variables such as expected number of visitors each month and maximum monthly temperature.Keywords: Water demand forecast; Neural Networks model; water resources management; Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121735 Intelligent Caching in on-demand Routing Protocol for Mobile Adhoc Networks
Authors: Shobha.K.R., K. Rajanikanth
Abstract:
An on-demand routing protocol for wireless ad hoc networks is one that searches for and attempts to discover a route to some destination node only when a sending node originates a data packet addressed to that node. In order to avoid the need for such a route discovery to be performed before each data packet is sent, such routing protocols must cache routes previously discovered. This paper presents an analysis of the effect of intelligent caching in a non clustered network, using on-demand routing protocols in wireless ad hoc networks. The analysis carried out is based on the Dynamic Source Routing protocol (DSR), which operates entirely on-demand. DSR uses the cache in every node to save the paths that are learnt during route discovery procedure. In this implementation, caching these paths only at intermediate nodes and using the paths from these caches when required is tried. This technique helps in storing more number of routes that are learnt without erasing the entries in the cache, to store a new route that is learnt. The simulation results on DSR have shown that this technique drastically increases the available memory for caching the routes discovered without affecting the performance of the DSR routing protocol in any way, except for a small increase in end to end delay.Keywords: Caching, DSR, on demand routing, MANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901734 Two-Level Identification of HVAC Consumers for Demand Response Potential Estimation Based on Setpoint Change
Authors: M. Naserian, M. Jooshaki, M. Fotuhi-Firuzabad, M. Hossein Mohammadi Sanjani, A. Oraee
Abstract:
In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a solution is presented to uncover consumers with high air conditioner demand among a large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.
Keywords: Data-driven analysis, demand response, direct load control, HVAC system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381733 Dynamic Interaction Network to Model the Interactive Patterns of International Stock Markets
Authors: Laura Lukmanto, Harya Widiputra, Lukas
Abstract:
Studies in economics domain tried to reveal the correlation between stock markets. Since the globalization era, interdependence between stock markets becomes more obvious. The Dynamic Interaction Network (DIN) algorithm, which was inspired by a Gene Regulatory Network (GRN) extraction method in the bioinformatics field, is applied to reveal important and complex dynamic relationship between stock markets. We use the data of the stock market indices from eight countries around the world in this study. Our results conclude that DIN is able to reveal and model patterns of dynamic interaction from the observed variables (i.e. stock market indices). Furthermore, it is also found that the extracted network models can be utilized to predict movement of the stock market indices with a considerably good accuracy.
Keywords: complex dynamic relationship, dynamic interaction network, interactive stock markets, stock market interdependence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13971732 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique
Authors: P. Kanakasabapathy, Radhika. S,
Abstract:
In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self scheduling to ensure profit for the plant.
Keywords: Ancillary services, BPSO, Power System Economics (Electricity markets), Self-Scheduling, Sliding Window Technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25721731 Energy Aware Adhoc On-demand Multipath Distance Vector Protocol for QoS Routing
Authors: J. Seetaram, P. Satish Kumar
Abstract:
Mobile Adhoc Networks (MANETs) are infrastructure-less, dynamic network of collections of wireless mobile nodes communicating with each other without any centralized authority. A MANET is a mobile device of interconnections through wireless links, forming a dynamic topology. Routing protocols have a big role in data transmission across a network. Routing protocols, two major classifications are unipath and multipath. This study evaluates performance of an on-demand multipath routing protocol named Adhoc On-demand Multipath Distance Vector routing (AOMDV). This study proposes Energy Aware AOMDV (EAAOMDV) an extension of AOMDV which decreases energy consumed on a route.Keywords: Mobile Adhoc Network (MANET), unipath, multipath, Adhoc On-demand Multipath Distance Vector routing (AOMDV).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21241730 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.
Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13071729 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey
Abstract:
In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.
Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031728 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators
Authors: Andrea Bellucci, Martina Tofi
Abstract:
The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.
Keywords: Balance sheet indicators, Bancassurance, business models, ward algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12601727 The Supplier Relationship Management Market Trends
Authors: Eulálio G. Campelo F., Wolffried Stucky
Abstract:
The paper introduces and discusses definitions and concepts from the supplier relationship management area. This review has the goal to provide readers with the basic conditions to understand the market mechanisms and the technological developments of the SRM market. Further on, the work gives a picture of the actual business environment in which the SRM vendors are in, and the main trends in the field, based on the main SRM functionalities i.e. e-Procurement, e-Sourcing and Supplier Enablement, which indicates users and software providers the future technological developments and practises that will take place in this area in the next couple of years.Keywords: Supplier Relationship Management, e-Procurement, e-Sourcing, Supplier Enablement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35221726 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.
Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25341725 Approaches to Promote Healthy Recreation Activities for Elderly Tourists at Bang Nam Phueng Floating Market, Prapradeang District, Samutprakarn Province
Authors: Sasitorn Chetanont
Abstract:
The objectives of this study are to find out the approaches to promote healthy recreation activities for elderly tourists and develop Bang Nam Phueng Floating Market to be a health tourism attraction. The research methodology was to analyze internal and external situations according to MP-MF and the MCSTEPS principles. As for the results of this study the researcher found that the healthy recreational activities for elderly tourists could be divided in 7 groups; travelling Bang Nam Phueng Floating Market activity, homestay relaxation, arts center platform activity, healthy massage activity, paying homage to a Buddha image activity, herbal joss-stick home activity, making local desserts and food activity.
Keywords: Elderly tourists, recreational activities, Bang Nam Phueng Floating Market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20501724 Production Planning for Animal Food Industry under Demand Uncertainty
Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut
Abstract:
This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.
Keywords: Animal food, Stochastic linear programming, Production planning, Demand Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19141723 Matching Farmer Competence and Farm Resources with the Transformation of Agri-Food Marketing Systems
Authors: Bhawat Chiamjinnawat
Abstract:
The agri-food market transformation has implied market growth for the fruit industry in Thailand. This article focuses on analysis of farmer competence and farm resources which affect market strategies used by fruit farmers in Chanthaburi province of Thailand. The survey data were collected through the use of face-to-face interviews with structured questionnaires. This study identified 14 drivers related to farmer competence and farm resources of which some had significant effect on the decision to use either high-value markets or traditional markets. The results suggest that farmers who used high-value markets were better educated and they had longer experience and larger sized business. Identifying the important factors that match with the market transformation provides policy with opportunities to support the fruit farmers to increase their market power. Policies that promote business expansion of agricultural cooperatives and knowledge sharing among farmers are recommended to reduce limitations due to limited knowledge, low experience, and small business sizes.
Keywords: Farmer competence, farm resources, fruit industry, high-value markets, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12541722 Risk and Impact of the COVID-19 Crisis on Real Estate
Authors: Tahmina Akhter
Abstract:
In the present work, we make a study of the repercussions of the pandemic generated by COVID-19 in the real estate market, this disease has affected almost all sectors of the economy across different countries in the world, including the real estate markets. This documentary research, basically focused on the years 2021 and 2022, as we seek to focus on the strongest time of the pandemic. We carried out the study trying to take into account the repercussions throughout the world and that is why the data we analyze take into account information from all possible continents. Particularly in the US, Europe and China, where the COVID-19 impact has been of such proportions that it has fundamentally affected the housing market for middle-class housing. In addition, the pandemic has posed risks to investments in this market, due to the fact that companies in the sector have generated losses in certain cases; in the Chinese case, Evergrande, one of the largest companies in the sector, fell into default.
Keywords: COVID-19, real estate market, statistics of COVID-19, Evergrande Real Estate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711721 The Impact of the European Single Market on the Austrian Economy under Alternative Assumptions about Global and National Policy Reactions
Authors: Reinhard Neck, Guido Schäfer
Abstract:
In this paper, we explore the macroeconomic effects of the European Single Market on Austria by simulating the McKibbin-Sachs Global Model. Global interdependences and the impact of long-run effects on short-run adjustments are taken into account. We study the sensitivity of the results with respect to different assumptions concerning monetary and fiscal policies for the countries and regions of the world economy. The consequences of different assumptions about budgetary policies in Austria are also investigated. The simulation results are contrasted with ex-post evaluations of the actual impact of Austria’s membership in the Single Market. As a result, it can be concluded that the Austrian participation in the European Single Market entails considerable long-run gains for the Austrian economy with nearly no adverse sideeffects on any macroeconomic target variable.Keywords: Macroeconomics, European Union, simulation, sensitivity analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17331720 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.
Keywords: Artificial neural network, load estimation, regional survey, rural electrification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13581719 Impact of the Electricity Market Prices on Energy Storage Operation during the COVID-19 Pandemic
Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić
Abstract:
With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.
Keywords: Electrical market prices, electricity market, energy storage optimization, mixed integer linear programming, MILP, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5141718 The Activity of Mergers and Acquisitions in Romania in the 2000-2010 Decade, First Stage: Toward the Maturity of the Market (2000-2004)
Authors: Alina Badulescu, Mariana Vancea
Abstract:
The paper investigates the main issues concerning the activity of mergers and acquisitions in Romania in the period 2000- 2004. As in the first decade after the failure of the socialist economy the market of M&A was living its infancy based exclusively on privatization transactions, after 2000 the market entered in a stage of maturity. We are investigated both the registered evolutions in terms of number and value of transactions, and some sectoral issues, concerning the most important industries affected by the M&A process.
Keywords: Mergers and acquisitions, Romania, 2000-2010 decade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15431717 Sustainability through Self-Restriction: Livelihood Strategies of Urban Households in Kazakhstan
Authors: Daurenbek Kuleimenov
Abstract:
Urban life is characterized by rapid changes and high influence of market institutions on livelihood strategies of households to get sustainability, especially in countries of former Soviet Union challenged transformation of economy to the market type. Moving from socialistic worldviews to capitalistic ones which as usual regulated by free markets has been enough big challenge for households in urban area, which have to face with adaptation to new systems. Influence of market institutions on everyday life and planning system of households can destroy traditional household dispositions of the sustainable managing of a family budget. New changes of economy system can lead to splitting up large social networks and appearing new risky livelihood strategies of households. Urban households from Astana that is the capital city of Kazakhstan were interviewed within international research project “Livelihoods Strategies of Private Households in Central Asia. A Rural-Urban Comparison in Kazakhstan and Kyrgyzstan”, which enables to explore urgent issues of livelihood strategies of urban households in current Kazakhstan under influence of the spreading of market institutions from the micro level research focus of their everyday life.
Keywords: Market institutions, Sustainability, Transformation economy, Urban households.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18481716 Application of GM (1, 1) Model Group Based on Recursive Solution in China's Energy Demand Forecasting
Authors: Yeqing Guan, Fen Yang
Abstract:
To learn about China-s future energy demand, this paper first proposed GM(1,1) model group based on recursive solutions of parameters estimation, setting up a general solving-algorithm of the model group. This method avoided the problems occurred on the past researches that remodeling, loss of information and large amount of calculation. This paper established respectively all-data-GM(1,1), metabolic GM(1,1) and new information GM (1,1)model according to the historical data of energy consumption in China in the year 2005-2010 and the added data of 2011, then modeling, simulating and comparison of accuracies we got the optimal models and to predict. Results showed that the total energy demand of China will be 37.2221 billion tons of equivalent coal in 2012 and 39.7973 billion tons of equivalent coal in 2013, which are as the same as the overall planning of energy demand in The 12th Five-Year Plan.
Keywords: energy demands, GM(1, 1) model group, least square estimation, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15541715 Value Engineering and Its Effect in Reduction of Industrial Organization Energy Expenses
Authors: Habibollah Najafi, Amir Abbas Yazdani, Hosseinali Nahavandi
Abstract:
The review performed on the condition of energy consumption & rate in Iran, shows that unfortunately the subject of optimization and conservation of energy in active industries of country lacks a practical & effective method and in most factories, the energy consumption and rate is more than in similar industries of industrial countries. The increasing demand of electrical energy and the overheads which it imposes on the organization, forces companies to search for suitable approaches to optimize energy consumption and demand management. Application of value engineering techniques is among these approaches. Value engineering is considered a powerful tool for improving profitability. These tools are used for reduction of expenses, increasing profits, quality improvement, increasing market share, performing works in shorter durations, more efficient utilization of sources & etc. In this article, we shall review the subject of value engineering and its capabilities for creating effective transformations in industrial organizations, in order to reduce energy costs & the results have been investigated and described during a case study in Mazandaran wood and paper industries, the biggest consumer of energy in north of Iran, for the purpose of presenting the effects of performed tasks in optimization of energy consumption by utilizing value engineering techniques in one case study.Keywords: Value Engineering (VE), Expense, Energy, Industrial
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22661714 A New Hybrid Model with Passive Congregation for Stock Market Indices Prediction
Authors: Tarek Aboueldahab
Abstract:
In this paper, we propose a new hybrid learning model for stock market indices prediction by adding a passive congregation term to the standard hybrid model comprising Particle Swarm Optimization (PSO) with Genetic Algorithm (GA) operators in training Neural Networks (NN). This new passive congregation term is based on the cooperation between different particles in determining new positions rather than depending on the particles selfish thinking without considering other particles positions, thus it enables PSO to perform both the local and global search instead of only doing the local search. Experiment study carried out on the most famous European stock market indices in both long term and short term prediction shows significantly the influence of the passive congregation term in improving the prediction accuracy compared to standard hybrid model.
Keywords: Global Search, Hybrid Model, Passive Congregation, Stock Market Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15021713 Benefits of Polish Accession to the European Union for Air Transport
Authors: D. Tloczynski
Abstract:
The main aim of this article is to present a balance of the decade of Polish air transport market in the European Union having taking into account selected entities of the aviation market. This article analyzes the functioning of the Polish air transport market after the Polish accession to the European Union. During the study two main areas were pointed: shipping activity and activity of the airports. The most important benefits of integration and the benefits of introducing of the open sky policy were indicated. The last part of the article presents the perspectives of development of air traffic.
Keywords: Air transport, airports, development air transport, European Union, Poland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15901712 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks
Authors: Hazem M. El-Bakry, Nikos Mastorakis
Abstract:
Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20671711 Development of User Interface for Path Planning System for Bus Network and On-demand Bus Reservation System
Authors: Seiichi Tamagawa, Takao Kawamura, Toshihiko Sasama, Kazunori Sugahara
Abstract:
Route bus system is one of fundamental transportation device for aged people and students, and has an important role in every province. However, passengers decrease year by year, therefore the authors have developed the system called "Bus-Net" as a web application to sustain the public transport. But there are two problems in Bus-Net. One is the user interface that does not consider the variety of the device, and the other is the path planning system that dose not correspond to the on-demand bus. Then, Bus-Net was improved to be able to utilize the variety of the device, and a new function corresponding to the on-demand bus was developed.
Keywords: Route Bus, Path Planning System, User Interface, Ondemandbus, Reservation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559