Search results for: classification and clustering.
1389 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.
Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12841388 Classification of Attaks over Cloud Environment
Authors: Karim Abouelmehdi, Loubna Dali, Elmoutaoukkil Abdelmajid, Hoda Elsayed Eladnani Fatiha, Benihssane Abderahim
Abstract:
The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses.Keywords: Cloud computing, security, classification, risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20831387 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.
Keywords: Clustering, k-means, categorical datasets, pattern recognition, unsupervised learning, knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35451386 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks
Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla
Abstract:
A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.Keywords: Clustering coefficient, criminology, generalized, regular network d-dimensional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16361385 Genetic Algorithm for Feature Subset Selection with Exploitation of Feature Correlations from Continuous Wavelet Transform: a real-case Application
Authors: G. Van Dijck, M. M. Van Hulle, M. Wevers
Abstract:
A genetic algorithm (GA) based feature subset selection algorithm is proposed in which the correlation structure of the features is exploited. The subset of features is validated according to the classification performance. Features derived from the continuous wavelet transform are potentially strongly correlated. GA-s that do not take the correlation structure of features into account are inefficient. The proposed algorithm forms clusters of correlated features and searches for a good candidate set of clusters. Secondly a search within the clusters is performed. Different simulations of the algorithm on a real-case data set with strong correlations between features show the increased classification performance. Comparison is performed with a standard GA without use of the correlation structure.Keywords: Classification, genetic algorithm, hierarchicalagglomerative clustering, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12241384 An Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks
Authors: Amir Sepasi Zahmati, Bahman Abolhassani, Ali Asghar Beheshti Shirazi, Ali Shojaee Bakhtiari
Abstract:
A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high-power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization.Keywords: Clustering methods, energy efficiency, routingprotocol, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27211383 Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System
Authors: Saran Satsangi, Ashish Saini, Amit Saraswat
Abstract:
In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approachKeywords: Voltage control areas, reactive power management, K-means clustering algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23991382 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering
Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55361381 Fuzzy Hierarchical Clustering Applied for Quality Estimation in Manufacturing System
Authors: Y. Q. Lv, C.K.M. Lee
Abstract:
This paper develops a quality estimation method with the application of fuzzy hierarchical clustering. Quality estimation is essential to quality control and quality improvement as a precise estimation can promote a right decision-making in order to help better quality control. Normally the quality of finished products in manufacturing system can be differentiated by quality standards. In the real life situation, the collected data may be vague which is not easy to be classified and they are usually represented in term of fuzzy number. To estimate the quality of product presented by fuzzy number is not easy. In this research, the trapezoidal fuzzy numbers are collected in manufacturing process and classify the collected data into different clusters so as to get the estimation. Since normal hierarchical clustering methods can only be applied for real numbers, fuzzy hierarchical clustering is selected to handle this problem based on quality standards.Keywords: Quality Estimation, Fuzzy Quality Mean, Fuzzy Hierarchical Clustering, Fuzzy Number, Manufacturing system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681380 Location Based Clustering in Wireless Sensor Networks
Authors: Ashok Kumar, Narottam Chand, Vinod Kumar
Abstract:
Due to the limited energy resources, energy efficient operation of sensor node is a key issue in wireless sensor networks. Clustering is an effective method to prolong the lifetime of energy constrained wireless sensor network. However, clustering in wireless sensor network faces several challenges such as selection of an optimal group of sensor nodes as cluster, optimum selection of cluster head, energy balanced optimal strategy for rotating the role of cluster head in a cluster, maintaining intra and inter cluster connectivity and optimal data routing in the network. In this paper, we propose a protocol supporting an energy efficient clustering, cluster head selection/rotation and data routing method to prolong the lifetime of sensor network. Simulation results demonstrate that the proposed protocol prolongs network lifetime due to the use of efficient clustering, cluster head selection/rotation and data routing.
Keywords: Wireless sensor networks, clustering, energy efficient, localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26851379 Discovering Complex Regularities by Adaptive Self Organizing Classification
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.
Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631378 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets
Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi
Abstract:
In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.
Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001377 An Energy-Efficient Distributed Unequal Clustering Protocol for Wireless Sensor Networks
Authors: Sungju Lee, Jangsoo Lee , Hongjoong Sin, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim
Abstract:
The wireless sensor networks have been extensively deployed and researched. One of the major issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to prolong the lifetime of a wireless sensor networks. In the paper, we compare several clustering protocols which significantly affect a balancing of energy consumption. And we propose an Energy-Efficient Distributed Unequal Clustering (EEDUC) algorithm which provides a new way of creating distributed clusters. In EEDUC, each sensor node sets the waiting time. This waiting time is considered as a function of residual energy, number of neighborhood nodes. EEDUC uses waiting time to distribute cluster heads. We also propose an unequal clustering mechanism to solve the hot-spot problem. Simulation results show that EEDUC distributes the cluster heads, balances the energy consumption well among the cluster heads and increases the network lifetime.Keywords: Wireless Sensor Network, Distributed UnequalClustering, Multi-hop, Lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24891376 A Review on Enhanced Dynamic Clustering in WSN
Authors: M. Sangeetha, A. Sabari, K. Elakkiya
Abstract:
Recent advancement in wireless internetworking has presented a number of dynamic routing protocols based on sensor networks. At present, a number of revisions are made based on their energy efficiency, lifetime and mobility. However, to the best of our knowledge no extensive survey of this special type has been prepared. At present, review is needed in this area where cluster-based structures for dynamic wireless networks are to be discussed. In this paper, we examine and compare several aspects and characteristics of some extensively explored hierarchical dynamic clustering protocols in wireless sensor networks. This document also presents a discussion on the future research topics and the challenges of dynamic hierarchical clustering in wireless sensor networks.Keywords: Dynamic cluster, Hierarchical clustering, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761375 Clustering Methods Applied to the Tracking of user Traces Interacting with an e-Learning System
Authors: Larbi Omar, Elberrichi Zakaria
Abstract:
Many research works are carried out on the analysis of traces in a digital learning environment. These studies produce large volumes of usage tracks from the various actions performed by a user. However, to exploit these data, compare and improve performance, several issues are raised. To remedy this, several works deal with this problem seen recently. This research studied a series of questions about format and description of the data to be shared. Our goal is to share thoughts on these issues by presenting our experience in the analysis of trace-based log files, comparing several approaches used in automatic classification applied to e-learning platforms. Finally, the obtained results are discussed.Keywords: Classification, , e-learning platform, log file, Trace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14791374 Upgraded Rough Clustering and Outlier Detection Method on Yeast Dataset by Entropy Rough K-Means Method
Authors: P. Ashok, G. M. Kadhar Nawaz
Abstract:
Rough set theory is used to handle uncertainty and incomplete information by applying two accurate sets, Lower approximation and Upper approximation. In this paper, the rough clustering algorithms are improved by adopting the Similarity, Dissimilarity–Similarity and Entropy based initial centroids selection method on three different clustering algorithms namely Entropy based Rough K-Means (ERKM), Similarity based Rough K-Means (SRKM) and Dissimilarity-Similarity based Rough K-Means (DSRKM) were developed and executed by yeast dataset. The rough clustering algorithms are validated by cluster validity indexes namely Rand and Adjusted Rand indexes. An experimental result shows that the ERKM clustering algorithm perform effectively and delivers better results than other clustering methods. Outlier detection is an important task in data mining and very much different from the rest of the objects in the clusters. Entropy based Rough Outlier Factor (EROF) method is seemly to detect outlier effectively for yeast dataset. In rough K-Means method, by tuning the epsilon (ᶓ) value from 0.8 to 1.08 can detect outliers on boundary region and the RKM algorithm delivers better results, when choosing the value of epsilon (ᶓ) in the specified range. An experimental result shows that the EROF method on clustering algorithm performed very well and suitable for detecting outlier effectively for all datasets. Further, experimental readings show that the ERKM clustering method outperformed the other methods.
Keywords: Clustering, Entropy, Outlier, Rough K-Means, validity index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131373 Multi-Label Hierarchical Classification for Protein Function Prediction
Authors: Helyane B. Borges, Julio Cesar Nievola
Abstract:
Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.
Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23801372 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks
Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik
Abstract:
Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.
Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21231371 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20441370 Clustering Protein Sequences with Tailored General Regression Model Technique
Authors: G. Lavanya Devi, Allam Appa Rao, A. Damodaram, GR Sridhar, G. Jaya Suma
Abstract:
Cluster analysis divides data into groups that are meaningful, useful, or both. Analysis of biological data is creating a new generation of epidemiologic, prognostic, diagnostic and treatment modalities. Clustering of protein sequences is one of the current research topics in the field of computer science. Linear relation is valuable in rule discovery for a given data, such as if value X goes up 1, value Y will go down 3", etc. The classical linear regression models the linear relation of two sequences perfectly. However, if we need to cluster a large repository of protein sequences into groups where sequences have strong linear relationship with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we propose a new technique named General Regression Model Technique Clustering Algorithm (GRMTCA) to benignly handle the problem of linear sequences clustering. GRMT gives a measure, GR*, to tell the degree of linearity of multiple sequences without having to compare each pair of them.Keywords: Clustering, General Regression Model, Protein Sequences, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671369 Fuzzy Clustering of Categorical Attributes and its Use in Analyzing Cultural Data
Authors: George E. Tsekouras, Dimitris Papageorgiou, Sotiris Kotsiantis, Christos Kalloniatis, Panagiotis Pintelas
Abstract:
We develop a three-step fuzzy logic-based algorithm for clustering categorical attributes, and we apply it to analyze cultural data. In the first step the algorithm employs an entropy-based clustering scheme, which initializes the cluster centers. In the second step we apply the fuzzy c-modes algorithm to obtain a fuzzy partition of the data set, and the third step introduces a novel cluster validity index, which decides the final number of clusters.
Keywords: Categorical data, cultural data, fuzzy logic clustering, fuzzy c-modes, cluster validity index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17091368 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.
Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481367 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm
Authors: Mohamed E. Salem Abozaed
Abstract:
Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notchingKeywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26001366 GA Based Optimal Feature Extraction Method for Functional Data Classification
Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai
Abstract:
Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551365 System Reduction Using Modified Pole Clustering and Modified Cauer Continued Fraction
Authors: Jay Singh, C. B. Vishwakarma, Kalyan Chatterjee
Abstract:
A mixed method by combining modified pole clustering technique and modified cauer continued fraction is proposed for reducing the order of the large-scale dynamic systems. The denominator polynomial of the reduced order model is obtained by using modified pole clustering technique while the coefficients of the numerator are obtained by modified cauer continued fraction. This method generated 'k' number of reduced order models for kth order reduction. The superiority of the proposed method has been elaborated through numerical example taken from the literature and compared with few existing order reduction methods.
Keywords: Modified Pole Clustering, Modified Cauer Continued Fraction, Order Reduction, Stability, Transfer Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19661364 Meta-Classification using SVM Classifiers for Text Documents
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%.Keywords: Meta-classification, Learning with Kernels, Support Vector Machine, and Performance Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161363 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13781362 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45261361 A Review and Comparative Analysis on Cluster Ensemble Methods
Authors: S. Sarumathi, P. Ranjetha, C. Saraswathy, M. Vaishnavi, S. Geetha
Abstract:
Clustering is an unsupervised learning technique for aggregating data objects into meaningful classes so that intra cluster similarity is maximized and inter cluster similarity is minimized in data mining. However, no single clustering algorithm proves to be the most effective in producing the best result. As a result, a new challenging technique known as the cluster ensemble approach has blossomed in order to determine the solution to this problem. For the cluster analysis issue, this new technique is a successful approach. The cluster ensemble's main goal is to combine similar clustering solutions in a way that achieves the precision while also improving the quality of individual data clustering. Because of the massive and rapid creation of new approaches in the field of data mining, the ongoing interest in inventing novel algorithms necessitates a thorough examination of current techniques and future innovation. This paper presents a comparative analysis of various cluster ensemble approaches, including their methodologies, formal working process, and standard accuracy and error rates. As a result, the society of clustering practitioners will benefit from this exploratory and clear research, which will aid in determining the most appropriate solution to the problem at hand.
Keywords: Clustering, cluster ensemble methods, consensus function, data mining, unsupervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8231360 Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation
Authors: S. Logeswari, K. Premalatha
Abstract:
Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term based searches. Algorithms for semantic searches are implemented based on the relations exist between the words of the documents. Ontologies are used as domain knowledge for identifying the semantic relations as well as to structure the data for effective information retrieval. Annotation of data with concepts of ontology is one of the wide-ranging practices for clustering the documents. In this paper, indexing based on concept and annotation are proposed for clustering the biomedical documents. Fuzzy c-means (FCM) clustering algorithm is used to cluster the documents. The performances of the proposed methods are analyzed with traditional term based clustering for PubMed articles in five different diseases communities. The experimental results show that the proposed methods outperform the term based fuzzy clustering.
Keywords: MeSH Ontology, Concept Indexing, Annotation, semantic relations, Fuzzy c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304