Search results for: Voice Activity Detection.
2765 Rapid Detection System of Airborne Pathogens
Authors: Shigenori Togashi, Kei Takenaka
Abstract:
We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above “mist labeling”. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.
Keywords: Viruses, Sampler, Mist, Detection, Fluorescent dyes, Microreaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28482764 Change Detection and Non Stationary Signals Tracking by Adaptive Filtering
Authors: Mounira RouaÐùnia, Noureddine Doghmane
Abstract:
In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.Keywords: Change detection, Hypothesis test, likelihood ratioleast square lattice adaptive filters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16372763 A Novel Hybrid Mobile Agent Based Distributed Intrusion Detection System
Authors: Amir Vahid Dastjerdi, Kamalrulnizam Abu Bakar
Abstract:
The first generation of Mobile Agents based Intrusion Detection System just had two components namely data collection and single centralized analyzer. The disadvantage of this type of intrusion detection is if connection to the analyzer fails, the entire system will become useless. In this work, we propose novel hybrid model for Mobile Agent based Distributed Intrusion Detection System to overcome the current problem. The proposed model has new features such as robustness, capability of detecting intrusion against the IDS itself and capability of updating itself to detect new pattern of intrusions. In addition, our proposed model is also capable of tackling some of the weaknesses of centralized Intrusion Detection System models.Keywords: Distributed Intrusion Detection System, Mobile Agents, Network Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17832762 Intrusion Detection based on Distance Combination
Authors: Joffroy Beauquier, Yongjie Hu
Abstract:
The intrusion detection problem has been frequently studied, but intrusion detection methods are often based on a single point of view, which always limits the results. In this paper, we introduce a new intrusion detection model based on the combination of different current methods. First we use a notion of distance to unify the different methods. Second we combine these methods using the Pearson correlation coefficients, which measure the relationship between two methods, and we obtain a combined distance. If the combined distance is greater than a predetermined threshold, an intrusion is detected. We have implemented and tested the combination model with two different public data sets: the data set of masquerade detection collected by Schonlau & al., and the data set of program behaviors from the University of New Mexico. The results of the experiments prove that the combination model has better performances.
Keywords: Intrusion detection, combination, distance, Pearson correlation coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18432761 Design the Bowtie Antenna for the Detection of the Tumor in Microwave Tomography
Authors: Muhammd Hassan Khalil, Xu Jiadong
Abstract:
Early breast cancer detection is an emerging field of research as it can save the women infected by malignant tumors. Microwave breast imaging is based on the electrical property contrast between healthy and malignant tumor. This contrast can be detected by use of microwave energy with an array of antennas that illuminate the breast through coupling medium and by measuring the scattered fields. In this paper, author has been presented the design and simulation results of the bowtie antenna. This bowtie antenna is designed for the detection of breast cancer detection.
Keywords: Breast cancer detection, Microwave Imaging, Tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20692760 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application
Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed
Abstract:
This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16352759 A Framework for Review Spam Detection Research
Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim
Abstract:
With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers, but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a highquality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.
Keywords: Fake reviews, Feature collection, Opinion spam, Spam detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25192758 Imposter Detection Based on Location in Vehicular Ad-Hoc Network
Authors: Sanjoy Das, Akash Arya, Rishi Pal Singh
Abstract:
Vehicular Ad hoc Network is basically the solution of several problems associated while vehicles are plying on the road. In this paper, we have focused on the detection of imposter node while it has stolen the ID's of the authenticated vehicle in the network. The purpose is to harm the network through imposter messages. Here, we have proposed a protocol namely Imposter Detection based on Location (IDBL), which will store the location coordinate of the each vehicle as the key of the authenticity of the message so that imposter node can be detected. The imposter nodes send messages from a stolen ID and show that it is from an authentic node ID. So, to detect this anomaly, the first location is checked and observed different from original vehicle location. This node is known as imposter node. We have implemented the algorithm through JAVA and tested various types of node distribution and observed the detection probability of imposter node.
Keywords: Authentication, detection, IDBL protocol, imposter node, node detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8052757 Fast Algorithm of Shot Cut Detection
Authors: Lenka Krulikovská, Jaroslav Polec, Tomáš Hirner
Abstract:
In this paper we present a novel method, which reduces the computational complexity of abrupt cut detection. We have proposed fast algorithm, where the similarity of frames within defined step is evaluated instead of comparing successive frames. Based on the results of simulation on large video collection, the proposed fast algorithm is able to achieve 80% reduction of needed frames comparisons compared to actually used methods without the shot cut detection accuracy degradation.Keywords: Abrupt cut, fast algorithm, shot cut detection, Pearson correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17472756 Implementation of the Personal Emergency Response System
Authors: Ah-young Jeon, In-cheol Kim, Jae-hee Jung, Soo-young Ye, Jae-hyung Kim, Ki-gon Nam, Seoung-wan Baik, Jung-hoon Ro, Gye-rok Jeon
Abstract:
The aged are faced with increasing risk for falls. The aged have the easily fragile bones than others. When falls have occurred, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through Bluetooth module. This system can classify the human activity, and also detect the emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test was lasted at least 1 min. in third study. The output of acceleration signal was compared and evaluated by changing a various posture after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in low cost to manufacture device. The implemented system can detect the fall accurately, so will be widely used in emergency situation.Keywords: Alarm System, Ambulatory monitoring, Emergency detection, Classification of activity, and 3-axis accelerometer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15992755 Development of Intelligent Time/Frequency Based Signal Detection Algorithm for Intrusion Detection System
Authors: Waqas Ahmed, S Sajjad Haider Zaidi
Abstract:
For the past couple of decades Weak signal detection is of crucial importance in various engineering and scientific applications. It finds its application in areas like Wireless communication, Radars, Aerospace engineering, Control systems and many of those. Usually weak signal detection requires phase sensitive detector and demodulation module to detect and analyze the signal. This article gives you a preamble to intrusion detection system which can effectively detect a weak signal from a multiplexed signal. By carefully inspecting and analyzing the respective signal, this system can successfully indicate any peripheral intrusion. Intrusion detection system (IDS) is a comprehensive and easy approach towards detecting and analyzing any signal that is weakened and garbled due to low signal to noise ratio (SNR). This approach finds significant importance in applications like peripheral security systems.Keywords: Data Acquisition, fast frequency transforms, Lab VIEW software, weak signal detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25142754 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.
Keywords: Face detection algorithm, Haar features, Security of ATM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21122753 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of WorldView-2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows with accuracy of 94% effectively and automatically. Furthermore, the new shadow detection index improved road extraction from 82% to 93%.
Keywords: Spectral index, shadow detection, remote sensing images, WorldView-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33302752 e-Learning Program with Voice Assistance for a Tactile Braille
Authors: Yutaka Takaoka, Mika Ohta, Aki Sugano, Tsuyoshi Oda, Eiichi Maeda, Sumiyo Hanaoka, Masako Matsuura
Abstract:
Along with the increased morbidity of glaucoma or diabetic retinitis pigmentosa, etc., number of people with vision loss is also increasing in Japan. It is difficult for the visually impaired to learn and acquire braille because most of them are middle-aged. In addition, number of braille teachers are not sufficient and reducing in Japan, and this situation makes more difficult for the visually impaired. Therefore, we research and develop a Web-based e-learning program for tactile braille, that cooperate with braille display and voice assistance.Keywords: Acquired visually impaired, Braille, e-learning, Tactile braille
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17002751 Concealed Objects Detection in Visible, Infrared and Terahertz Ranges
Authors: M. Kowalski, M. Kastek, M. Szustakowski
Abstract:
Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertz.
Keywords: Infrared, image processing, object detection, screening camera, terahertz.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30952750 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification
Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman
Abstract:
In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27002749 Shot Boundary Detection Using Octagon Square Search Pattern
Authors: J. Kavitha, S. Sowmyayani, P. Arockia Jansi Rani
Abstract:
In this paper, a shot boundary detection method is presented using octagon square search pattern. The color, edge, motion and texture features of each frame are extracted and used in shot boundary detection. The motion feature is extracted using octagon square search pattern. Then, the transition detection method is capable of detecting the shot or non-shot boundaries in the video using the feature weight values. Experimental results are evaluated in TRECVID video test set containing various types of shot transition with lighting effects, object and camera movement within the shots. Further, this paper compares the experimental results of the proposed method with existing methods. It shows that the proposed method outperforms the state-of-art methods for shot boundary detection.
Keywords: Content-based indexing and retrieval, cut transition detection, discrete wavelet transform, shot boundary detection, video source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10032748 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection
Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi
Abstract:
In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.Keywords: HTM, Real time anomaly detection, ECG, Cardiac Anomalies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8002747 Intrusion Detection System Based On The Integrity of TCP Packet
Authors: Moad Alhamaty , Ali Yazdian , Fathi Al-qadasi
Abstract:
A common way to elude the signature-based Network Intrusion Detection System is based upon changing a recognizable attack to an unrecognizable one via the IDS. For example, in order to evade sign accommodation with intrusion detection system markers, a hacker spilt the payload packet into many small pieces or hides them within messages. In this paper we try to model the main fragmentation attack and create a new module in the intrusion detection architecture system which recognizes the main fragmentation attacks through verification of integrity checking of TCP packet in order to prevent elusion of the system and also to announce the necessary alert to the system administrator.
Keywords: Intrusion detection system, Evasion techniques, Fragmentation attacks, TCP Packet integrity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18542746 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.
Keywords: Data science, fraud detection, machine learning, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7792745 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.
Keywords: Text detection, CNN, PZM, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662744 Frame Texture Classification Method (FTCM) Applied on Mammograms for Detection of Abnormalities
Authors: Kjersti Engan, Karl Skretting, Jostein Herredsvela, Thor Ole Gulsrud
Abstract:
Texture classification is an important image processing task with a broad application range. Many different techniques for texture classification have been explored. Using sparse approximation as a feature extraction method for texture classification is a relatively new approach, and Skretting et al. recently presented the Frame Texture Classification Method (FTCM), showing very good results on classical texture images. As an extension of that work the FTCM is here tested on a real world application as detection of abnormalities in mammograms. Some extensions to the original FTCM that are useful in some applications are implemented; two different smoothing techniques and a vector augmentation technique. Both detection of microcalcifications (as a primary detection technique and as a last stage of a detection scheme), and soft tissue lesions in mammograms are explored. All the results are interesting, and especially the results using FTCM on regions of interest as the last stage in a detection scheme for microcalcifications are promising.Keywords: detection, mammogram, texture classification, dictionary learning, FTCM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13972743 Identifying Attack Code through an Ontology-Based Multiagent Tool: FROID
Authors: Salvador Mandujano
Abstract:
This paper describes the design and results of FROID, an outbound intrusion detection system built with agent technology and supported by an attacker-centric ontology. The prototype features a misuse-based detection mechanism that identifies remote attack tools in execution. Misuse signatures composed of attributes selected through entropy analysis of outgoing traffic streams and process runtime data are derived from execution variants of attack programs. The core of the architecture is a mesh of self-contained detection cells organized non-hierarchically that group agents in a functional fashion. The experiments show performance gains when the ontology is enabled as well as an increase in accuracy achieved when correlation cells combine detection evidence received from independent detection cells.Keywords: Outbound intrusion detection, knowledge management, multiagent systems, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16652742 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. 46 papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow ICSTs on different types of mycotoxins. The papers were dated 2001-2021. 25 papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone: 5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structures are usually used in large scale detection. In conclusion, the limit of detection of Aflatoxin B1 is the lowest among these mycotoxins. Gold-nanoparticle based immunochromatographic test strips have the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles.
Keywords: Aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins, smartphone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4222741 Spatio-Temporal Video Slice Edges Analysis for Shot Transition Detection and Classification
Authors: Aissa Saoudi, Hassane Essafi
Abstract:
In this work we will present a new approach for shot transition auto-detection. Our approach is based on the analysis of Spatio-Temporal Video Slice (STVS) edges extracted from videos. The proposed approach is capable to efficiently detect both abrupt shot transitions 'cuts' and gradual ones such as fade-in, fade-out and dissolve. Compared to other techniques, our method is distinguished by its high level of precision and speed. Those performances are obtained due to minimizing the problem of the boundary shot detection to a simple 2D image partitioning problem.Keywords: Boundary shot detection, Shot transition detection, Video analysis, Video indexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16422740 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech
Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin
Abstract:
The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.Keywords: Speaker identification, acoustic-spectrographic method, non-native speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8672739 Voice Over IP Technology Development in Offshore Industry: System Dynamics Approach
Authors: B. Kiyani, R. H. Amiri, S. H. Hosseini, A. Bourouni, A. Karimi
Abstract:
Nowadays, offshore's complicated facilities need their own communications requirements. Nevertheless, developing and real-world applications of new communications technology are faced with tremendous problems for new technology users, developers and implementers. Traditional systems engineering cannot be capable to develop a new technology effectively because it does not consider the dynamics of the process. This paper focuses on the design of a holistic model that represents the dynamics of new communication technology development within offshore industry. The model shows the behavior of technology development efforts. Furthermore, implementing this model, results in new and useful insights about the policy option analysis for developing a new communications technology in offshore industry.Keywords: Technology development, Offshore industry, Systemdynamics, Voice Over IP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16452738 Efficient Iterative Detection Technique in Wireless Communication System
Authors: Hwan-Jun Choi, Sung-Bok Choi, Hyoung-Kyu Song
Abstract:
Recently, among the MIMO-OFDM detection techniques, a lot of papers suggested V-BLAST scheme which can achieve high data rate. Therefore, the signal detection of MIMO-OFDM system is important issue. In this paper, efficient iterative V-BLAST detection technique is proposed in wireless communication system. The proposed scheme adjusts the number of candidate symbol and iterative scheme based on channel state. According to the simulation result, the proposed scheme has better BER performance than conventional schemes and similar BER performance of the QRD-M with iterative scheme. Moreover complexity of proposed scheme has 50.6% less than complexity of QRD-M detection with iterative scheme. Therefore the proposed detection scheme can be efficiently used in wireless communication.
Keywords: MIMO-OFDM, V-BLAST, QR-decomposition, QRD-M, DFE, Iterative scheme, Channel condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20582737 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation
Authors: Anton Stadler, Thorsten Ike
Abstract:
In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14232736 Automatic Distance Compensation for Robust Voice-based Human-Computer Interaction
Authors: Randy Gomez, Keisuke Nakamura, Kazuhiro Nakadai
Abstract:
Distant-talking voice-based HCI system suffers from performance degradation due to mismatch between the acoustic speech (runtime) and the acoustic model (training). Mismatch is caused by the change in the power of the speech signal as observed at the microphones. This change is greatly influenced by the change in distance, affecting speech dynamics inside the room before reaching the microphones. Moreover, as the speech signal is reflected, its acoustical characteristic is also altered by the room properties. In general, power mismatch due to distance is a complex problem. This paper presents a novel approach in dealing with distance-induced mismatch by intelligently sensing instantaneous voice power variation and compensating model parameters. First, the distant-talking speech signal is processed through microphone array processing, and the corresponding distance information is extracted. Distance-sensitive Gaussian Mixture Models (GMMs), pre-trained to capture both speech power and room property are used to predict the optimal distance of the speech source. Consequently, pre-computed statistic priors corresponding to the optimal distance is selected to correct the statistics of the generic model which was frozen during training. Thus, model combinatorics are post-conditioned to match the power of instantaneous speech acoustics at runtime. This results to an improved likelihood in predicting the correct speech command at farther distances. We experiment using real data recorded inside two rooms. Experimental evaluation shows voice recognition performance using our method is more robust to the change in distance compared to the conventional approach. In our experiment, under the most acoustically challenging environment (i.e., Room 2: 2.5 meters), our method achieved 24.2% improvement in recognition performance against the best-performing conventional method.
Keywords: Human Machine Interaction, Human Computer Interaction, Voice Recognition, Acoustic Model Compensation, Acoustic Speech Enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887