
 

 

  
Abstract—This paper describes the design and results of FROID, 

an outbound intrusion detection system built with agent technology 
and supported by an attacker-centric ontology. The prototype 
features a misuse-based detection mechanism that identifies remote 
attack tools in execution. Misuse signatures composed of attributes 
selected through entropy analysis of outgoing traffic streams and 
process runtime data are derived from execution variants of attack 
programs. The core of the architecture is a mesh of self-contained 
detection cells organized non-hierarchically that group agents in a 
functional fashion. The experiments show performance gains when 
the ontology is enabled as well as an increase in accuracy achieved 
when correlation cells combine detection evidence received from 
independent detection cells. 
 

Keywords—Outbound intrusion detection, knowledge 
management, multiagent systems, ontology. 

I. INTRODUCTION 
REVIOUS research in the area of intrusion detection has 
considered the use of software agents for building security 

monitoring tools [1]. A number of prototypes based on 
autonomous agents have been developed but no ontological 
constructs have been actually implemented in order to allow 
agents to collect and share information in a semantically rich 
format that enables more intelligent conducts. Similarly, a 
variety of programming languages have been used for these 
implementations but, unlike other agent-based applications in 
areas such as negotiation and knowledge sharing, just a few 
intrusion detection tools have taken advantage of actual agent 
frameworks and libraries to build such systems [2]. 
 The potential benefits of using knowledge representation 
techniques in the area of computer security have been already 
acknowledged [3]. A smooth, maintainable integration with 
other technologies and a reduction to the amount of data to be 
transferred through message passing are two potential 
advantages of the approach that this paper addresses. 

We built the FROID (First Resource for Outbound 
Intrusion Detection) system in order to explore the 
possibilities that an ontology-based intrusion detection system 
can offer. Being social behavior one of the key characteristics 
of multiagent systems, a common interpretation of the 
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environment is necessary to endow intrusion detection agents 
with inference and knowledge sharing capabilities that help 
them speed up data filtering and decision making. An 
attacker-centric ontology [4] is the underlying layer of the 
FROID multiagent architecture whose purpose is to identify 
automated remote-attack tools in execution. 
 The system follows the outbound intrusion detection 
paradigm [5], a collective approach to security monitoring that 
aims at protecting a society of nodes by guaranteeing that each 
member monitors its own outbound traffic for signs of 
malicious activity. By distributing the monitoring workload 
among all member nodes, rather than positioning the detection 
mechanism at intermediate choke points, the society as a 
whole achieves security monitoring by making sure that no 
local processes running on any of the nodes attempt to launch 
an attack towards others. 

FROID was built using the FIPA-compatible JADE agent 
framework and OWL was used to define the ontology that 
represents the components of the environment agents inhabit. 
The design of the tool departed from the characterization of 
automated remote-attack tools by means of two independent, 
yet complementary signature types (i.e., network traffic and 
process execution signatures) as well as pattern matching data 
structure based on the internals of Snort [6].  

II. BACKGROUND 

A. Outbound Intrusion Detection 
Outbound Intrusion Detection (OID) is a variant to the 

problem of intrusion detection. Its objectives differ from those 
of traditional intrusion detection systems but both approaches 
share fundamental aspects such as their monitoring nature and 
the type of security threats they handle. OID focuses, not on 
protecting local resources from being compromised, but on 
preventing those resources from being used to compromise 
other systems. It aims at containing the impact of a security-
relevant incident by monitoring outbound activity at the host 
level so that the system cannot be utilized as an attack 
launcher or intrusion relay.  

B.  Ontologies and Semantics 
For humans, knowing the relationships among entities in a 

certain context allows us to infer information not explicitly 
communicated. Ontologies are knowledge representation 
models that can be used to enable that kind of behavior in 
software [1]. They capture the description of an environment 
so that a unique interpretation can be shared among all 
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interested parties. Ontologies go beyond lexicographic 
representation and querying by allowing programs to perform 
logic operations on the data they handle.  

One of the limitations that agent-based intrusion detection 
software has is the lack of autonomy of its agents. Recent 
work in the area of knowledge representation has proposed the 
use of ontologies for security-related problems [7]. We 
leverage that idea and experimentally evaluate the potential of 
using a semantic layer for the problem of outbound intrusion 
detection. The ontology the system uses is based on the 
perspective on the attacker. This is assumed to be able to 
probe other systems while logged on into a local host.  

OWL [8] is an XML/RDF-based language that evolved 
from DAML+OIL and became one of the richest ontology 
languages available. To define a class derived from a 
superclass, for instance, FROID utilizes the following syntax: 

 
<owl:Class rdf:ID=”ProcessSignature”> 
  <rdfs:subClassOf> 
    <owl:Class rdf:ID=”Signature”/> 
  </rdfs:subClassof> 
</owl:Class> 
 
All agent-communicated messages are based on the 

ontology. For the sender it is not necessary to indicate that 
ProcessSignature is a Signature. The knowledge stored in the 
ontology, which is shared among all agents, is accessed by the 
recipient upon getting the message in order to run the 
interpretation. This is how message contents can be optimized 
and data exchanges reduced. 

C. Trends in Cybercrime 
Over the last years, there have been some trends in 

information security that have changed the priority of certain 
threats hereby generating new requirements. One of them is 
the need to develop solutions that deal with the increasing 
number of attack tools available on the Web. This type of 
software can be easily downloaded and executed by many 
users allowing them to perform system fingerprinting, 
scanning and actual vulnerability exploitation [8].  

Not much expertise is required for running some 
applications and this has contributed to an increase in the 
number of users who explore the capabilities of this software. 
Along the same lines goes the increasing number of attacks 
launched remotely that target systems connected to the 
Internet. The count of internal attacks has been decreasing 
whereas security reports indicate external attacks continue on 
the rise due to increased connectivity around the globe [8]. 

III. DESIGN CONSIDERATIONS 
The objective of the system is to use an ontology-based 

multiagent architecture to identify remote-attack program 
signatures (for a detailed ontology description see [4]). 

A. Characterization of remote attack tools 
Many different aspects may be considered when 

characterizing programs in execution. We have used two 
primary aspects: (1) the peculiarities of the network traffic 
generated by the tools, and (2) the resources accessed by its 
process(es) when in execution. The former is an approach 

widely used by network-based intrusion detection tools. The 
difference is that an OID system has access to details such as 
how packets are being generated (e.g., how source IP 
addresses and/or port numbers are being locally modified, or 
how the sender is forcing fragmentation to bypass a firewall). 
This information is not typically accessible to traditional 
intrusion detection systems, which are typically placed on the 
victim's side. 

Analyzing the specific resources accessed by an attack tool 
also helps identify its execution. This is because execution 
details such as the data and text segments uploaded into 
primary memory, the libraries and other files opened by the 
program, as well as the sequence of system calls requested to 
the kernel can be, as a whole, distinctive enough as to identify 
a program from the rest.  

B.  Test Set and Signature Definition 
 In order to identify the fields to include in the signatures, 
we exercised a group of 50 remote attack programs 
downloaded from the Web. The selected programs exploit 
vulnerabilities on different services through TCP/IP 
connections and all run on Linux (kernel 2.1 was used for the 
testing). We further limited our tool collection to programs 
that: use socket connectivity, target Windows, Linux or 
CISCO platforms, were written in C, C++ or PERL (our 
research indicates these languages cover the majority of attack 
tools), and those whose source code is freely available. 

The programs were exercised with five different parameter 
sets. With every parameter set, each tool was executed 
multiple times for consistency (see section IV). Network 
traffic is, in general, not well behaved, but all our trails were 
consistent. Both, the outgoing network traffic streams (the 
first 100 packets per execution) as well as /proc profiles were 
captured. We then applied entropy analysis to the data in order 
to identify the most relevant fields.  

For the purpose of avoiding biased results, we used three 
entropy analysis rules commonly utilized for growing decision 
trees. These are:  
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 The amount of information each field conveys was 
quantified and a ranking was created. From the results we 
found out that the first 16 packets of each stream did suffice to 
identify with 93% confidence the originating program. 
 Every tool can be executed with different parameter 
combinations. Through experimentation we found that it is 
difficult to define a single signature per program to enclose all 
the different execution paths the program takes as determined 
by the parameters supplied by the user.  

Executions from the same parameter combination, however, 
can be easily grouped together. In the example of Fig. 1, three 
programs are executed three times each with two parameter 
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combinations. Three attributes compose the sample signature. 
Program 3, for example, is represented by rings. Even when 
the three executions corresponding to the same single 
parameter combination are clustered together, the other 
parameter combinations generate totally different clusters that 
stand separate from each other. With more programs and 
many more attributes, generating a single signature per 
program becomes more difficult. Based on these findings, 
FROID identifies independent tool executions depending on 
the parameter combination used.  

Signatures are composed of high-entropy attributes that 
help define crisp clusters. The network signature fields are: 

 
Network signature = {source port, source 
address, destination port, destination address, 
fragmentation, window size, {flags1, flags2, ..., 

flagsk}, {hash1, hash2, ..., hashk}}  
 

Where k represents the number of packet considered for 
detection; flagsi are the ACK, SYN, FIN and RST flags of each 
TCP packet; and hashi represents the MD5 hash of the 
packet’s payload. Process signatures contain: 

 
Process signature = {program name, text segment 
checksum, number of files opened, {file1, file2, 

..., filek}, number of dynamic libraries opened, 
{dlibrary1, dlibrary2, ... , dlibraryk}, memory 
allocated at upload, file hash} 
 

Different modifications to the execution realm may lead to 
inaccuracies during detection, however, we focus on the 
majority of the cases [9] in which users will download and 
immediately execute the tool. 
 

 
Fig. 1 Clustering program signatures 

 

C. Multiagent Architecture 
Multiple agent-based intrusion detection implementations 

were reviewed. In general, they are composed of three agent 
types: sensors in charge of collecting information, processors 
in charge of operating on that information, and action agents 
responsible for reporting the findings (most tools do not have 
reaction capabilities built in). 

We used these types of agents as the foundation of the 
architecture and built a non-hierarchical system that groups 
agents into cells. Cells have the purpose of providing an 
environment whose integrity can be easily verified. Being the 
malicious host a challenge to agent software, in particular to 

mobile agent applications, having an execution 
subenvironment in software makes security evaluation easy. 

The system was built in Java using the JADE agent 
generation framework, the JENA ontology-processing library, 
and the OWL XMP/RDF-based ontology definition language. 
Cells are implemented as JADE containers by means of Java 
virtual machines. The basic agent types are: sensors (S), 
correlators (C), and reactors (R). These are combined into five 
different cell types. Some cells perform signature generation 
and some do signature detection:  

 
• Traffic Signature Generation cells (TSGC). Generate 

traffic signatures and are composed of S and C agents. 
• Traffic Signature Detection cells (TSDC). Detect traffic 

signatures and are composed of S, C, and R agents. 
• Process Signature Generation cell (PSGC). Generate 

process signatures and are composed of S and C agents. 
• Process Signature Detection cell (PSDC). Detect process 

signatures and are composed of S, C, and R agents. 
• Correlation cell (CC). Receive input from PSDC and 

TSDC cells in order to identify signatures more 
accurately. Are composed of S, C and R agents. 

 
Detection cells are fully independent and self-contained and 

perform detection tasks by themselves. Correlation cells are 
only used to provide higher detection accuracy by 
incorporating input from process and network traffic cells. 

D. Signature Matching 
Signature matching is an important component of intrusion 

detection technologies. In particular, it is necessary to develop 
efficient data structures and algorithms that allow the 
detection mechanism to process all the evidence. Snort is a 
tool used for identifying anomalous network patterns. Part of 
its success is the simplicity of the signatures it handles and the 
flexibility this provides [6]. We extended the basic data 
structure of Snort with additional dimensions required to 
capture our signatures (Fig. 2). It is important to mention that 
we support a permanently sorted data structure that places 
high-entropy attributes at the front of the lists.  

IV. OPERATIONAL OUTLINE 
Two data streams are the input to the architecture: outbound 

network traffic and process execution data. Signature 
generation cells read these streams and extract information at 
the time the attack tool is executed during training. They then 
share the signatures with local monitoring agents and 
alternatively upload signature updates into a signature 
repository. Traffic monitoring cells permanently screen TCP 
network packets looking for a match with the existing 
signatures. At the same time, process monitoring cells do the 
same by monitoring /proc profiles (the detection trigger is the 
request of an open socket system call to the kernel). These two 
monitoring cells may independently identify an attack tool. An 
additional correlation cell receives these detection hypotheses 
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can more precisely identify the attack program that is being 
executed. 

 

 
 

Fig. 2 Snort-based, 3D data structure 

V. EXPERIMANTAL RESULTS 

The objective of the experimentation with FROID was two-
fold: to evaluate performance and to evaluate accuracy. The 
system was exercised with 50 attack tools, each of them 
executed with five different parameter variations. Each 
variation was executed five times for a total of 1,250 samples. 

1. Performance: Ontology-disabled. A network monitoring 
cell takes 2.2 sec in average to generate an hypothesis using 
programmatic structures. In this scenario, messages 
exchanged between agents contain all the information needed 
for interpretation (i.e., no ontology use). A process monitoring 
cell takes 2.8 sec to produce a hypothesis. When correlation 
agents are enabled, the generation of a hypothesis takes 2.6 
sec in average. This is most likely due to (1) the time it takes 
for the detection cells to send input to the correlator, in 
addition to (2) the time it takes to run through the inference 
rules that allow the correlator to produce its output.  

2. Performance: Ontology-enabled. All agents have a copy 
of the OID ontology. The size of the messages is reduced 
around 56% and the interpretation task takes less time. A 
process monitoring cell will take 2.0 sec in average to 
generate a hypothesis using the ontology, whereas a network 
monitoring cell takes around 1.7 sec. When correlation is 
enabled, detection time goes up to 2.7 sec. This is due to the 
additional interpretation of the ontology structures necessary 
to derive the correlator´s hypothesis.  

3. Accuracy. In the two scenarios used before, detection 
accuracy is not very different – as it was expected. With 
ontology disabled and enabled, process cells correctly identify 
the attack tool in execution with probability 0.81 and 0.85, 
respectively. Traffic cells are less precise due to packet misses 
and payload variations. They detect the correct attack tool 
with probability 0.78 and 0.76, respectively.  
 Integrating independent detection input into a correlator, 
significantly increases detection accuracy. When correlation 

cells are enabled to combine traffic and process detection 
hypotheses, the average detection accuracy from 1,250 
executions is 0.91, which is considerably higher than the 
detection performed by the most accurate detection cell (0.85, 
process detection cells with ontology enabled). 

VI. CONCLUSION 
The integration of an ontology into an outbound intrusion 

detection tool built with agent software shows performance 
gains due to reduced message size and accelerated knowledge 
interpretation supported by inference-support structures 
uploaded into the agents’ RAM (less lexicographical 
processing, more inference capabilities.) By combining inputs 
from independent detection engines that access different 
evidence sources a more accurate and robust detection 
mechanism can be built through the use of correlators that 
prioritize information pieces by their entropy value. 
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