

Abstract—This paper describes the design and results of FROID,

an outbound intrusion detection system built with agent technology
and supported by an attacker-centric ontology. The prototype
features a misuse-based detection mechanism that identifies remote
attack tools in execution. Misuse signatures composed of attributes
selected through entropy analysis of outgoing traffic streams and
process runtime data are derived from execution variants of attack
programs. The core of the architecture is a mesh of self-contained
detection cells organized non-hierarchically that group agents in a
functional fashion. The experiments show performance gains when
the ontology is enabled as well as an increase in accuracy achieved
when correlation cells combine detection evidence received from
independent detection cells.

Keywords—Outbound intrusion detection, knowledge
management, multiagent systems, ontology.

I. INTRODUCTION
REVIOUS research in the area of intrusion detection has
considered the use of software agents for building security

monitoring tools [1]. A number of prototypes based on
autonomous agents have been developed but no ontological
constructs have been actually implemented in order to allow
agents to collect and share information in a semantically rich
format that enables more intelligent conducts. Similarly, a
variety of programming languages have been used for these
implementations but, unlike other agent-based applications in
areas such as negotiation and knowledge sharing, just a few
intrusion detection tools have taken advantage of actual agent
frameworks and libraries to build such systems [2].
 The potential benefits of using knowledge representation
techniques in the area of computer security have been already
acknowledged [3]. A smooth, maintainable integration with
other technologies and a reduction to the amount of data to be
transferred through message passing are two potential
advantages of the approach that this paper addresses.

We built the FROID (First Resource for Outbound
Intrusion Detection) system in order to explore the
possibilities that an ontology-based intrusion detection system
can offer. Being social behavior one of the key characteristics
of multiagent systems, a common interpretation of the

Manuscript received May 20, 2005. This work was supported in part by the
Information Security Research Grant of ITESM Monterrey (Cátedra de
Seguridad Informática del ITESM Campus Monterrey.)

Salvador Mandujano, Center for Intelligent Systems, Instituto Tecnológico
y de Estudios Superiores de Monterrey (ITESM), Monterrey, NL 64849,
Mexico (e-mail: smv@itesm.mx).

environment is necessary to endow intrusion detection agents
with inference and knowledge sharing capabilities that help
them speed up data filtering and decision making. An
attacker-centric ontology [4] is the underlying layer of the
FROID multiagent architecture whose purpose is to identify
automated remote-attack tools in execution.
 The system follows the outbound intrusion detection
paradigm [5], a collective approach to security monitoring that
aims at protecting a society of nodes by guaranteeing that each
member monitors its own outbound traffic for signs of
malicious activity. By distributing the monitoring workload
among all member nodes, rather than positioning the detection
mechanism at intermediate choke points, the society as a
whole achieves security monitoring by making sure that no
local processes running on any of the nodes attempt to launch
an attack towards others.

FROID was built using the FIPA-compatible JADE agent
framework and OWL was used to define the ontology that
represents the components of the environment agents inhabit.
The design of the tool departed from the characterization of
automated remote-attack tools by means of two independent,
yet complementary signature types (i.e., network traffic and
process execution signatures) as well as pattern matching data
structure based on the internals of Snort [6].

II. BACKGROUND

A. Outbound Intrusion Detection
Outbound Intrusion Detection (OID) is a variant to the

problem of intrusion detection. Its objectives differ from those
of traditional intrusion detection systems but both approaches
share fundamental aspects such as their monitoring nature and
the type of security threats they handle. OID focuses, not on
protecting local resources from being compromised, but on
preventing those resources from being used to compromise
other systems. It aims at containing the impact of a security-
relevant incident by monitoring outbound activity at the host
level so that the system cannot be utilized as an attack
launcher or intrusion relay.

B. Ontologies and Semantics
For humans, knowing the relationships among entities in a

certain context allows us to infer information not explicitly
communicated. Ontologies are knowledge representation
models that can be used to enable that kind of behavior in
software [1]. They capture the description of an environment
so that a unique interpretation can be shared among all

Identifying Attack Code through an
Ontology-Based Multiagent Tool: FROID

Salvador Mandujano

P

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1781International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

74
2.

pd
f

interested parties. Ontologies go beyond lexicographic
representation and querying by allowing programs to perform
logic operations on the data they handle.

One of the limitations that agent-based intrusion detection
software has is the lack of autonomy of its agents. Recent
work in the area of knowledge representation has proposed the
use of ontologies for security-related problems [7]. We
leverage that idea and experimentally evaluate the potential of
using a semantic layer for the problem of outbound intrusion
detection. The ontology the system uses is based on the
perspective on the attacker. This is assumed to be able to
probe other systems while logged on into a local host.

OWL [8] is an XML/RDF-based language that evolved
from DAML+OIL and became one of the richest ontology
languages available. To define a class derived from a
superclass, for instance, FROID utilizes the following syntax:

<owl:Class rdf:ID=”ProcessSignature”>
 <rdfs:subClassOf>
 <owl:Class rdf:ID=”Signature”/>
 </rdfs:subClassof>
</owl:Class>

All agent-communicated messages are based on the

ontology. For the sender it is not necessary to indicate that
ProcessSignature is a Signature. The knowledge stored in the
ontology, which is shared among all agents, is accessed by the
recipient upon getting the message in order to run the
interpretation. This is how message contents can be optimized
and data exchanges reduced.

C. Trends in Cybercrime
Over the last years, there have been some trends in

information security that have changed the priority of certain
threats hereby generating new requirements. One of them is
the need to develop solutions that deal with the increasing
number of attack tools available on the Web. This type of
software can be easily downloaded and executed by many
users allowing them to perform system fingerprinting,
scanning and actual vulnerability exploitation [8].

Not much expertise is required for running some
applications and this has contributed to an increase in the
number of users who explore the capabilities of this software.
Along the same lines goes the increasing number of attacks
launched remotely that target systems connected to the
Internet. The count of internal attacks has been decreasing
whereas security reports indicate external attacks continue on
the rise due to increased connectivity around the globe [8].

III. DESIGN CONSIDERATIONS
The objective of the system is to use an ontology-based

multiagent architecture to identify remote-attack program
signatures (for a detailed ontology description see [4]).

A. Characterization of remote attack tools
Many different aspects may be considered when

characterizing programs in execution. We have used two
primary aspects: (1) the peculiarities of the network traffic
generated by the tools, and (2) the resources accessed by its
process(es) when in execution. The former is an approach

widely used by network-based intrusion detection tools. The
difference is that an OID system has access to details such as
how packets are being generated (e.g., how source IP
addresses and/or port numbers are being locally modified, or
how the sender is forcing fragmentation to bypass a firewall).
This information is not typically accessible to traditional
intrusion detection systems, which are typically placed on the
victim's side.

Analyzing the specific resources accessed by an attack tool
also helps identify its execution. This is because execution
details such as the data and text segments uploaded into
primary memory, the libraries and other files opened by the
program, as well as the sequence of system calls requested to
the kernel can be, as a whole, distinctive enough as to identify
a program from the rest.

B. Test Set and Signature Definition
 In order to identify the fields to include in the signatures,
we exercised a group of 50 remote attack programs
downloaded from the Web. The selected programs exploit
vulnerabilities on different services through TCP/IP
connections and all run on Linux (kernel 2.1 was used for the
testing). We further limited our tool collection to programs
that: use socket connectivity, target Windows, Linux or
CISCO platforms, were written in C, C++ or PERL (our
research indicates these languages cover the majority of attack
tools), and those whose source code is freely available.

The programs were exercised with five different parameter
sets. With every parameter set, each tool was executed
multiple times for consistency (see section IV). Network
traffic is, in general, not well behaved, but all our trails were
consistent. Both, the outgoing network traffic streams (the
first 100 packets per execution) as well as /proc profiles were
captured. We then applied entropy analysis to the data in order
to identify the most relevant fields.

For the purpose of avoiding biased results, we used three
entropy analysis rules commonly utilized for growing decision
trees. These are:

(1) ∑
∈

−=
k

sValuesv
ki

i

vpvpsEntropy
)(

)(log)()(

(2))()()(,
)(

,
vi

k

sValuesv i

vi
ii sEntropy

s
s

sEntropysInfoGain
i

∑
∈

−=

(3) ∑
∈

−=
k

sValuesv
i

i

vpsGINI
)(

2)(1)(

 The amount of information each field conveys was
quantified and a ranking was created. From the results we
found out that the first 16 packets of each stream did suffice to
identify with 93% confidence the originating program.
 Every tool can be executed with different parameter
combinations. Through experimentation we found that it is
difficult to define a single signature per program to enclose all
the different execution paths the program takes as determined
by the parameters supplied by the user.

Executions from the same parameter combination, however,
can be easily grouped together. In the example of Fig. 1, three
programs are executed three times each with two parameter

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1782International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

74
2.

pd
f

combinations. Three attributes compose the sample signature.
Program 3, for example, is represented by rings. Even when
the three executions corresponding to the same single
parameter combination are clustered together, the other
parameter combinations generate totally different clusters that
stand separate from each other. With more programs and
many more attributes, generating a single signature per
program becomes more difficult. Based on these findings,
FROID identifies independent tool executions depending on
the parameter combination used.

Signatures are composed of high-entropy attributes that
help define crisp clusters. The network signature fields are:

Network signature = {source port, source
address, destination port, destination address,
fragmentation, window size, {flags1, flags2, ...,

flagsk}, {hash1, hash2, ..., hashk}}

Where k represents the number of packet considered for
detection; flagsi are the ACK, SYN, FIN and RST flags of each
TCP packet; and hashi represents the MD5 hash of the
packet’s payload. Process signatures contain:

Process signature = {program name, text segment
checksum, number of files opened, {file1, file2,

..., filek}, number of dynamic libraries opened,
{dlibrary1, dlibrary2, ... , dlibraryk}, memory
allocated at upload, file hash}

Different modifications to the execution realm may lead to
inaccuracies during detection, however, we focus on the
majority of the cases [9] in which users will download and
immediately execute the tool.

Fig. 1 Clustering program signatures

C. Multiagent Architecture
Multiple agent-based intrusion detection implementations

were reviewed. In general, they are composed of three agent
types: sensors in charge of collecting information, processors
in charge of operating on that information, and action agents
responsible for reporting the findings (most tools do not have
reaction capabilities built in).

We used these types of agents as the foundation of the
architecture and built a non-hierarchical system that groups
agents into cells. Cells have the purpose of providing an
environment whose integrity can be easily verified. Being the
malicious host a challenge to agent software, in particular to

mobile agent applications, having an execution
subenvironment in software makes security evaluation easy.

The system was built in Java using the JADE agent
generation framework, the JENA ontology-processing library,
and the OWL XMP/RDF-based ontology definition language.
Cells are implemented as JADE containers by means of Java
virtual machines. The basic agent types are: sensors (S),
correlators (C), and reactors (R). These are combined into five
different cell types. Some cells perform signature generation
and some do signature detection:

• Traffic Signature Generation cells (TSGC). Generate

traffic signatures and are composed of S and C agents.
• Traffic Signature Detection cells (TSDC). Detect traffic

signatures and are composed of S, C, and R agents.
• Process Signature Generation cell (PSGC). Generate

process signatures and are composed of S and C agents.
• Process Signature Detection cell (PSDC). Detect process

signatures and are composed of S, C, and R agents.
• Correlation cell (CC). Receive input from PSDC and

TSDC cells in order to identify signatures more
accurately. Are composed of S, C and R agents.

Detection cells are fully independent and self-contained and

perform detection tasks by themselves. Correlation cells are
only used to provide higher detection accuracy by
incorporating input from process and network traffic cells.

D. Signature Matching
Signature matching is an important component of intrusion

detection technologies. In particular, it is necessary to develop
efficient data structures and algorithms that allow the
detection mechanism to process all the evidence. Snort is a
tool used for identifying anomalous network patterns. Part of
its success is the simplicity of the signatures it handles and the
flexibility this provides [6]. We extended the basic data
structure of Snort with additional dimensions required to
capture our signatures (Fig. 2). It is important to mention that
we support a permanently sorted data structure that places
high-entropy attributes at the front of the lists.

IV. OPERATIONAL OUTLINE
Two data streams are the input to the architecture: outbound

network traffic and process execution data. Signature
generation cells read these streams and extract information at
the time the attack tool is executed during training. They then
share the signatures with local monitoring agents and
alternatively upload signature updates into a signature
repository. Traffic monitoring cells permanently screen TCP
network packets looking for a match with the existing
signatures. At the same time, process monitoring cells do the
same by monitoring /proc profiles (the detection trigger is the
request of an open socket system call to the kernel). These two
monitoring cells may independently identify an attack tool. An
additional correlation cell receives these detection hypotheses

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1783International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

74
2.

pd
f

can more precisely identify the attack program that is being
executed.

Fig. 2 Snort-based, 3D data structure

V. EXPERIMANTAL RESULTS

The objective of the experimentation with FROID was two-
fold: to evaluate performance and to evaluate accuracy. The
system was exercised with 50 attack tools, each of them
executed with five different parameter variations. Each
variation was executed five times for a total of 1,250 samples.

1. Performance: Ontology-disabled. A network monitoring
cell takes 2.2 sec in average to generate an hypothesis using
programmatic structures. In this scenario, messages
exchanged between agents contain all the information needed
for interpretation (i.e., no ontology use). A process monitoring
cell takes 2.8 sec to produce a hypothesis. When correlation
agents are enabled, the generation of a hypothesis takes 2.6
sec in average. This is most likely due to (1) the time it takes
for the detection cells to send input to the correlator, in
addition to (2) the time it takes to run through the inference
rules that allow the correlator to produce its output.

2. Performance: Ontology-enabled. All agents have a copy
of the OID ontology. The size of the messages is reduced
around 56% and the interpretation task takes less time. A
process monitoring cell will take 2.0 sec in average to
generate a hypothesis using the ontology, whereas a network
monitoring cell takes around 1.7 sec. When correlation is
enabled, detection time goes up to 2.7 sec. This is due to the
additional interpretation of the ontology structures necessary
to derive the correlator´s hypothesis.

3. Accuracy. In the two scenarios used before, detection
accuracy is not very different – as it was expected. With
ontology disabled and enabled, process cells correctly identify
the attack tool in execution with probability 0.81 and 0.85,
respectively. Traffic cells are less precise due to packet misses
and payload variations. They detect the correct attack tool
with probability 0.78 and 0.76, respectively.
 Integrating independent detection input into a correlator,
significantly increases detection accuracy. When correlation

cells are enabled to combine traffic and process detection
hypotheses, the average detection accuracy from 1,250
executions is 0.91, which is considerably higher than the
detection performed by the most accurate detection cell (0.85,
process detection cells with ontology enabled).

VI. CONCLUSION
The integration of an ontology into an outbound intrusion

detection tool built with agent software shows performance
gains due to reduced message size and accelerated knowledge
interpretation supported by inference-support structures
uploaded into the agents’ RAM (less lexicographical
processing, more inference capabilities.) By combining inputs
from independent detection engines that access different
evidence sources a more accurate and robust detection
mechanism can be built through the use of correlators that
prioritize information pieces by their entropy value.

ACKNOWLEDGMENT
We thank Dr. Juan Arturo Nolazco-Flores (Department of

Computer Science, ITESM Monterrey) and Dr. Arturo
Galván-Rodríguez (Center for Intelligent Systems, ITESM
Monterrey) for their invaluable support to this project.

REFERENCES
[1] X. Guan, Y. Yang and J. You. G. O. Young, “POM - A mobile agent

security model against malicious hosts”, Proceedings of the 4th
International Conference on High-Performance Computing in the Asia-
Pacific Region, vol. 2, pp. 1165-1168, May 2000.

[2] D. Lange and M. Oshima, “Programming and deploying Java mobile
agents with Aglets”, Addison-Wesley Press, Menlo Park, CA, 1998.

[3] V. Raskin, C. Helpenmann, K. Triezenberg, and S. Nirenburg,
“Ontology in information security: a useful theoretical foundation and
methodological tool”, New Security Paradigms Workshop, ACM Press,
pp. 53-59, Cloudcroft, NM, 2001.

[4] S. Mandujano, A. Galván, J. A. Nolazco, “An Ontology-based
Multiagent Architecture for Outbound Intrusion Detection”, 3rd
ACS/IEEE International Conference on Computer Systems and
Applications, AICCSA ´05, vol. 1, pp. 120-128, Cairo, Egypt, January
2005.

[5] S. Mandujano and A. Galván, “Outbound Intrusion Detection”,
Proceedings of the International Computer, Communications and
Control Technologies, CCCT 04, vol. 1, pp. 68-73, Austin, TX, Nov.
2004.

[6] C.J. Coit, S. Staniford, and J. McAlerney, “Towards Faster String
Matching for Intrusion Detection or Exceeding the Speed of Snort”,
DARPA Information Survivability Conference and Exposition (DISCEX
II), vo1. 1, pp. 132-139, Anaheim, CA, June, 2001.

[7] J. Undercoffer, A. Joshi,, T. Finin, and John Pinkston, “A target centric
ontology for intrusion detection: using DAML+OIL to classify intrusive
behaviors”, Knowledge Engineering Review, Cambridge University
Press, pp. 23-29, January, 2004.

[8] P. Schneider, P. Hayes, I. Horrocks, F. Van-Harmelen, “Web Ontology
Language (OWL): abstract syntax and semantics”, working draft, W3C
web consortium, November, 2002.

[9] P. Rapalus et al., “CSI/FBI Computer Crime & Security Survey 2004”,
Computer Security Institute and Federal Bureau of Investigations, April,
2004.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

1784International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

74
2.

pd
f

