Search results for: Short-term load forecasting
1553 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8261552 Analyzing CPFR Supporting Factors with Fuzzy Cognitive Map Approach
Authors: G. Büyüközkan , O. Feyzioglu, Z. Vardaloglu
Abstract:
Collaborative planning, forecasting and replenishment (CPFR) coordinates the various supply chain management activities including production and purchase planning, demand forecasting and inventory replenishment between supply chain trading partners. This study proposes a systematic way of analyzing CPFR supporting factors using fuzzy cognitive map (FCM) approach. FCMs have proven particularly useful for solving problems in which a number of decision variables and uncontrollable variables are causally interrelated. Hence the FCMs of CPFR are created to show the relationships between the factors that influence on effective implementation of CPFR in the supply chain.Keywords: Collaborative planning, forecasting and replenishment, fuzzy cognitive map, information sharing, decision synchronization, incentive alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321551 A Review on Technology Forecasting Methods and Their Application Area
Authors: Daekook Kang, Wooseok Jang, Hyeonjeong Lee, Hyun Joung No
Abstract:
Technology changes have been acknowledged as a critical factor in determining competitiveness of organization. Under such environment, the right anticipation of technology change has been of huge importance in strategic planning. To monitor technology change, technology forecasting (TF) is frequently utilized. In academic perspective, TF has received great attention for a long time. However, few researches have been conducted to provide overview of the TF literature. Even though some studies deals with review of TF research, they generally focused on type and characteristics of various TF, so hardly provides information about patterns of TF research and which TF method is used in certain technology industry. Accordingly, this study profile developments in and patterns of scholarly research in TF over time. Also, this study investigates which technology industries have used certain TF method and identifies their relationships. This study will help in understanding TF research trend and their application area.Keywords: Technology forecasting, technology industry, TF trend, technology trajectory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29551550 Investigating the Demand for Short-shelf Life Food Products for SME Wholesalers
Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Ashley Hopwell, Alistair Duffy
Abstract:
Accurate forecasting of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. This paper is an attempt to understand the cause for the high level of variability such as weather, holidays etc., in demand of SME wholesalers. Therefore, understanding the significance of unidentified factors may improve the forecasting accuracy. This paper presents the current literature on the factors used to predict demand and the existing forecasting techniques of short shelf life products. It then investigates a variety of internal and external possible factors, some of which is not used by other researchers in the demand prediction process. The results presented in this paper are further analysed using a number of techniques to minimize noise in the data. For the analysis past sales data (January 2009 to May 2014) from a UK based SME wholesaler is used and the results presented are limited to product ‘Milk’ focused on café’s in derby. The correlation analysis is done to check the dependencies of variability factor on the actual demand. Further PCA analysis is done to understand the significance of factors identified using correlation. The PCA results suggest that the cloud cover, weather summary and temperature are the most significant factors that can be used in forecasting the demand. The correlation of the above three factors increased relative to monthly and becomes more stable compared to the weekly and daily demand.Keywords: Demand Forecasting, Deteriorating Products, Food Wholesalers, Principal Component Analysis and Variability Factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33681549 An Approach to Adaptive Load Balancing for RFID Middlewares
Authors: Heung Seok Chae, Jaegeol Park
Abstract:
Recently, there have been an increasing interest in RFID system and RFID systems have been applied to various applications. Load balancing is a fundamental technique for providing scalability of systems by moving workload from overloaded nodes to under-loaded nodes. This paper presents an approach to adaptive load balancing for RFID middlewares. Workloads of RFID middlewares can have a considerable variation according to the location of the connected RFID readers and can abruptly change at a particular instance. The proposed approach considers those characteristics of RFID middle- wares to provide an efficient load balancing.
Keywords: RFID middleware, Adaptive load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15641548 Forecasting of Flash Floods over Wadi Watier –Sinai Peninsula Using the Weather Research and Forecasting (WRF) Model
Authors: Moustafa S. El-Sammany
Abstract:
Flash floods are considered natural disasters that can cause casualties and demolishing of infra structures. The problem is that flash floods, particularly in arid and semi arid zones, take place in very short time. So, it is important to forecast flash floods earlier to its events with a lead time up to 48 hours to give early warning alert to avoid or minimize disasters. The flash flood took place over Wadi Watier - Sinai Peninsula, in October 24th, 2008, has been simulated, investigated and analyzed using the state of the art regional weather model. The Weather Research and Forecast (WRF) model, which is a reliable short term forecasting tool for precipitation events, has been utilized over the study area. The model results have been calibrated with the real data, for the same date and time, of the rainfall measurements recorded at Sorah gauging station. The WRF model forecasted total rainfall of 11.6 mm while the real measured one was 10.8 mm. The calibration shows significant consistency between WRF model and real measurements results.Keywords: Early warning system, Flash floods forecasting, WadiWatier, WRF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701547 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.
Keywords: UPFC, Decoupled model, Load flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20011546 Towards a Load Balancing Framework for an SMS–Based Service Invocation Environment
Authors: Mandla T. Nene, Edgar.Jembere, Matthew O. Adigun, Themba Shezi, Siyabonga S. Cebekhulu
Abstract:
The drastic increase in the usage of SMS technology has led service providers to seek for a solution that enable users of mobile devices to access services through SMSs. This has resulted in the proposal of solutions towards SMS-based service invocation in service oriented environments. However, the dynamic nature of service-oriented environments coupled with sudden load peaks generated by service request, poses performance challenges to infrastructures for supporting SMS-based service invocation. To address this problem we adopt load balancing techniques. A load balancing model with adaptive load balancing and load monitoring mechanisms as its key constructs is proposed. The load balancing model then led to realization of Least Loaded Load Balancing Framework (LLLBF). Evaluation of LLLBF benchmarked with round robin (RR) scheme on the queuing approach showed LLLBF outperformed RR in terms of response time and throughput. However, LLLBF achieved better result in the cost of high processing power.Keywords: SMS (Short Message Service), LLLBF (Least Loaded Load Balancing Framework), Service Oriented Computing (SOC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431545 A Study on Characteristics and Geometric Parameters of the Flat Porous Aerostatic Bearing
Authors: T. Y. Huang, B. Z. Wang, S. C. Lin, S. Y. Hsu
Abstract:
A CFD software was employed to analyze the characteristics of the flat round porous aerostatic bearings. The effects of gap between the bearing and the guide way and the porosity of the porous material on the load capacity of the bearing were studied. The adequacy of the simulation model and the approach was verified. From the parametric study, it is found that the depth of the flow path does not influence the load capacity of the bearing; the load capacity of the bearing will decrease if the thickness of the porous material increases or the porous material protrudes above the bearing housing; the variation of the chamfer at the edge of the bearing does not affect the bearing load capacity. For a bearing with an air gap of 5μm and a porosity of 0.1, the average load capacity and the pressure distribution of the bearing are nearly unchanged no matter the bearing moves at a constant or a varying speed.
Keywords: Aerostatic bearing, Load capacity, Porosity, Porous material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26031544 Design of AC Electronics Load Surge Protection
Authors: N. Mungkung, S. Wongcharoen, C. Sukkongwari, Somchai Arunrungrasmi
Abstract:
This study examines the design and construction of AC Electronics load surge protection in order to carry electric surge load arisen from faults in low voltage electricity system (single phase/220V) by using the principle of electronics load clamping voltage during induction period so that electric voltage could go through to safe load and continue to work. The qualification of the designed device could prevent both transient over voltage and voltage swell. Both will work in cooperation, resulting in the ability to improve and modify the quality of electrical power in Thailand electricity distribution system more effective than the past and help increase the lifetime of electric appliances, electric devices, and electricity protection equipments.Keywords: Electronics Load, Transient Over Voltage, Voltage Swell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26731543 Load Flow Analysis: An Overview
Authors: P. S. Bhowmik, D. V. Rajan, S. P. Bose
Abstract:
The load flow study in a power system constitutes a study of paramount importance. The study reveals the electrical performance and power flows (real and reactive) for specified condition when the system is operating under steady state. This paper gives an overview of different techniques used for load flow study under different specified conditions.
Keywords: Load Flow Studies, Y-matrix and Z-matrix iteration, Newton-Raphson method, Fast Decoupled method, Fuzzy logic, Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68581542 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine
Authors: Karin Kandananond
Abstract:
The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30091541 The Reliability of Management Earnings Forecasts in IPO Prospectuses: A Study of Managers’ Forecasting Preferences
Authors: Maha Hammami, Olfa Benouda Sioud
Abstract:
This study investigates the reliability of management earnings forecasts with reference to these two ingredients: verifiability and neutrality. Specifically, we examine the biasedness (or accuracy) of management earnings forecasts and company specific characteristics that can be associated with accuracy. Based on sample of 102 IPO prospectuses published for admission on NYSE Euronext Paris from 2002 to 2010, we found that these forecasts are on average optimistic and two of the five test variables, earnings variability and financial leverage are significant in explaining ex post bias. Acknowledging the possibility that the bias is the result of the managers’ forecasting behavior, we then examine whether managers decide to under-predict, over-predict or forecast accurately for self-serving purposes. Explicitly, we examine the role of financial distress, operating performance, ownership by insiders and the economy state in influencing managers’ forecasting preferences. We find that managers of distressed firms seem to over-predict future earnings. We also find that when managers are given more stock options, they tend to under-predict future earnings. Finally, we conclude that the management earnings forecasts are affected by an intentional bias due to managers’ forecasting preferences.
Keywords: Intentional bias, Management earnings forecasts, neutrality, verifiability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22431540 The Pixel Value Data Approach for Rainfall Forecasting Based on GOES-9 Satellite Image Sequence Analysis
Authors: C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
To develop a process of extracting pixel values over the using of satellite remote sensing image data in Thailand. It is a very important and effective method of forecasting rainfall. This paper presents an approach for forecasting a possible rainfall area based on pixel values from remote sensing satellite images. First, a method uses an automatic extraction process of the pixel value data from the satellite image sequence. Then, a data process is designed to enable the inference of correlations between pixel value and possible rainfall occurrences. The result, when we have a high averaged pixel value of daily water vapor data, we will also have a high amount of daily rainfall. This suggests that the amount of averaged pixel values can be used as an indicator of raining events. There are some positive associations between pixel values of daily water vapor images and the amount of daily rainfall at each rain-gauge station throughout Thailand. The proposed approach was proven to be a helpful manual for rainfall forecasting from meteorologists by which using automated analyzing and interpreting process of meteorological remote sensing data.
Keywords: Pixel values, satellite image, water vapor, rainfall, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621539 An Efficient Method for Load−Flow Solution of Radial Distribution Networks
Authors: Smarajit Ghosh , Karma Sonam Sherpa
Abstract:
This paper reports a new and accurate method for load-flow solution of radial distribution networks with minimum data preparation. The node and branch numbering need not to be sequential like other available methods. The proposed method does not need sending-node, receiving-node and branch numbers if these are sequential. The proposed method uses the simple equation to compute the voltage magnitude and has the capability to handle composite load modelling. The proposed method uses the set of nodes of feeder, lateral(s) and sub lateral(s). The effectiveness of the proposed method is compared with other methods using two examples. The detailed load-flow results for different kind of load-modellings are also presented.
Keywords: Load−flow, Feeder, Lateral, Power, Voltage, Composite, Exponential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57071538 Validation and Selection between Machine Learning Technique and Traditional Methods to Reduce Bullwhip Effects: a Data Mining Approach
Authors: Hamid R. S. Mojaveri, Seyed S. Mousavi, Mojtaba Heydar, Ahmad Aminian
Abstract:
The aim of this paper is to present a methodology in three steps to forecast supply chain demand. In first step, various data mining techniques are applied in order to prepare data for entering into forecasting models. In second step, the modeling step, an artificial neural network and support vector machine is presented after defining Mean Absolute Percentage Error index for measuring error. The structure of artificial neural network is selected based on previous researchers' results and in this article the accuracy of network is increased by using sensitivity analysis. The best forecast for classical forecasting methods (Moving Average, Exponential Smoothing, and Exponential Smoothing with Trend) is resulted based on prepared data and this forecast is compared with result of support vector machine and proposed artificial neural network. The results show that artificial neural network can forecast more precisely in comparison with other methods. Finally, forecasting methods' stability is analyzed by using raw data and even the effectiveness of clustering analysis is measured.Keywords: Artificial Neural Networks (ANN), bullwhip effect, demand forecasting, Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20101537 Load Balancing in Genetic Zone Routing Protocol for MANETs
Authors: P. Sateesh Kumar , S. Ramachandram
Abstract:
Genetic Zone Routing Protocol (GZRP) is a new hybrid routing protocol for MANETs which is an extension of ZRP by using Genetic Algorithm (GA). GZRP uses GA on IERP and BRP parts of ZRP to provide a limited set of alternative routes to the destination in order to load balance the network and robustness during node/link failure during the route discovery process. GZRP is studied for its performance compared to ZRP in many folds like scalability for packet delivery and proved with improved results. This paper presents the results of the effect of load balancing on GZRP. The results show that GZRP outperforms ZRP while balancing the load.Keywords: MANET, routing, ZRP, Genetic algorithm, GZRP, load balancing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21971536 Dynamic Load Modeling for KHUZESTAN Power System Voltage Stability Studies
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
Based on the component approach, three kinds of dynamic load models, including a single –motor model, a two-motor model and composite load model have been developed for the stability studies of Khuzestan power system. The study results are presented in this paper. Voltage instability is a dynamic phenomenon and therefore requires dynamic representation of the power system components. Industrial loads contain a large fraction of induction machines. Several models of different complexity are available for the description investigations. This study evaluates the dynamic performances of several dynamic load models in combination with the dynamics of a load changing transformer. Case study is steel industrial substation in Khuzestan power systems.Keywords: Dynamic load, modeling, Voltage Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18591535 Effect of Columns Stiffness's and Number of Floors on the Accuracy of the Tributary Area Method
Authors: Anas M. Fares
Abstract:
The using of finite element programs in analyzing and designing buildings are becoming very popular, but there are many engineers still using the tributary area method (TAM) in designing the structural members such as columns. This study is an attempt to investigate the accuracy of the TAM results with different load condition (gravity and lateral load), different floors numbers, and different columns stiffness's. To conduct this study, linear elastic analysis in ETABS program is used. The results from finite element method are compared to those obtained from TAM. According to the analysis of the data obtained, it can be seen that there is significance difference between the real load carried by columns and the load which is calculated by using the TAM. Thus, using 3-D models are the best choice to calculate the real load effected on columns and design these columns according to this load.Keywords: Tributary area method, finite element method, ETABS, lateral load, axial loads, reinforced concrete, stiffness, multi-floor buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11211534 Adjusted LOLE and EENS Indices for the Consideration of Load Excess Transfer in Power Systems Adequacy Studies
Authors: F. Vallée, J-F. Toubeau, Z. De Grève, J. Lobry
Abstract:
When evaluating the capacity of a generation park to cover the load in transmission systems, traditional Loss of Load Expectation (LOLE) and Expected Energy not Served (EENS) indices can be used. If those indices allow computing the annual duration and severity of load non covering situations, they do not take into account the fact that the load excess is generally shifted from one penury state (hour or quarter of an hour) to the following one. In this paper, a sequential Monte Carlo framework is introduced in order to compute adjusted LOLE and EENS indices. Practically, those adapted indices permit to consider the effect of load excess transfer on the global adequacy of a generation park, providing thus a more accurate evaluation of this quantity.Keywords: Expected Energy not Served, Loss of Load Expectation, Monte Carlo simulation, reliability, wind generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22091533 Approach to Implementation of Power Management with Load Prioritizations in Modern Civil Aircraft
Authors: Brice Nya, Detlef Schulz
Abstract:
Any use of energy in industrial productive activities is combined with various environment impacts. Withintransportation, this fact was not only found among land transport, railways and maritime transport, but also in the air transport industry. An effective climate protection requires strategies and measures for reducing all greenhouses gas emissions, in particular carbon dioxide, and must take into account the economic, ecologic and social aspects. It seem simperative now to develop and manufacture environmentally friendly products and systems, to reduce consumption and use less resource, and to save energy and power. Today-sproducts could better serve these requirements taking into account the integration of a power management system into the electrical power system.This paper gives an overview of an approach ofpower management with load prioritization in modernaircraft. Load dimensioning and load management strategies on current civil aircraft will be presented and used as a basis for the proposed approach.Keywords: Load management, power management, electrical load analysis, flight mission, power load profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23851532 Re-Design of Load Shedding Schemes of the Kosovo Power System
Authors: A.Gjukaj, G.Kabashi, G.Pula, N.Avdiu, B.Prebreza
Abstract:
This paper discusses aspects of re-design of loadshedding schemes with respect to actual developments in the Kosovo power system. Load-shedding is a type of emergency control that is designed to ensure system stability by reducing power system load to match the power generation supply. This paper presents a new adaptive load-shedding scheme that provides emergency protection against excess frequency decline, in cases when the Kosovo power system might be disconnected from the regional transmission network. The proposed load-shedding scheme uses the local frequency rate information to adapt the load-shedding pattern to suit the size and location of the occurring disturbance. The proposed scheme is tested in a software simulation on a large scale PSS/E model which represents nine power system areas of Southeast Europe including the Kosovo power system.Keywords: About Load Shedding, Power System Transient, PSS/E Dynamic Simulation, Under-frequency Protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27651531 Distributed Load Flow Analysis using Graph Theory
Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy
Abstract:
In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.Keywords: Radial Distribution network, Graph, Load-flow, Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31431530 Radar Hydrology: New Z/R Relationships for Klang River Basin Malaysia based on Rainfall Classification
Authors: R. Suzana, T. Wardah, A.B. Sahol Hamid
Abstract:
The use of radar in Quantitative Precipitation Estimation (QPE) for radar-rainfall measurement is significantly beneficial. Radar has advantages in terms of high spatial and temporal condition in rainfall measurement and also forecasting. In Malaysia, radar application in QPE is still new and needs to be explored. This paper focuses on the Z/R derivation works of radarrainfall estimation based on rainfall classification. The works developed new Z/R relationships for Klang River Basin in Selangor area for three different general classes of rain events, namely low (<10mm/hr), moderate (>10mm/hr, <30mm/hr) and heavy (>30mm/hr) and also on more specific rain types during monsoon seasons. Looking at the high potential of Doppler radar in QPE, the newly formulated Z/R equations will be useful in improving the measurement of rainfall for any hydrological application, especially for flood forecasting.
Keywords: Radar, Quantitative Precipitation Estimation, Z/R development, flood forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21511529 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.
Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25351528 Forecasting Stock Price Manipulation in Capital Market
Authors: F. Rahnamay Roodposhti, M. Falah Shams, H. Kordlouie
Abstract:
The aim of the article is extending and developing econometrics and network structure based methods which are able to distinguish price manipulation in Tehran stock exchange. The principal goal of the present study is to offer model for approximating price manipulation in Tehran stock exchange. In order to do so by applying separation method a sample consisting of 397 companies accepted at Tehran stock exchange were selected and information related to their price and volume of trades during years 2001 until 2009 were collected and then through performing runs test, skewness test and duration correlative test the selected companies were divided into 2 sets of manipulated and non manipulated companies. In the next stage by investigating cumulative return process and volume of trades in manipulated companies, the date of starting price manipulation was specified and in this way the logit model, artificial neural network, multiple discriminant analysis and by using information related to size of company, clarity of information, ratio of P/E and liquidity of stock one year prior price manipulation; a model for forecasting price manipulation of stocks of companies present in Tehran stock exchange were designed. At the end the power of forecasting models were studied by using data of test set. Whereas the power of forecasting logit model for test set was 92.1%, for artificial neural network was 94.1% and multi audit analysis model was 90.2%; therefore all of the 3 aforesaid models has high power to forecast price manipulation and there is no considerable difference among forecasting power of these 3 models.Keywords: Price Manipulation, Liquidity, Size of Company, Floating Stock, Information Clarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28541527 Levenberg-Marquardt Algorithm for Karachi Stock Exchange Share Rates Forecasting
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data.
Keywords: Gradient descent method, jacobian matrix.Levenberg-Marquardt algorithm, quadratic error surfaces,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24741526 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System
Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung
Abstract:
In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19951525 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks
Authors: O. A. Rahmeh, P. Johnson, S. Lehmann
Abstract:
Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.
Keywords: Complex networks, grid networks, load-balancing, random sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17851524 WEMax: Virtual Manned Assembly Line Generation
Authors: Won Kyung Ham, Kang Hoon Cho, Yongho Chung, Sang C. Park
Abstract:
Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.
Keywords: Performance Forecasting, Simulation, Virtual Manned Assembly Line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898