Search results for: Independent Spanning Trees
776 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954775 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices
Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar
Abstract:
Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSRinfected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.Keywords: Oil palm, image processing, disease, leaves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959774 A Detailed Timber Harvest Simulator Coupled with 3-D Visualization
Authors: Jürgen Roßmann, Gerrit Alves
Abstract:
In today-s world, the efficient utilization of wood resources comes more and more to the mind of forest owners. It is a very complex challenge to ensure an efficient harvest of the wood resources. This is one of the scopes the project “Virtual Forest II" addresses. Its core is a database with data about forests containing approximately 260 million trees located in North Rhine-Westphalia (NRW). Based on this data, tree growth simulations and wood mobilization simulations can be conducted. This paper focuses on the latter. It describes a discrete-event-simulation with an attached 3-D real time visualization which simulates timber harvest using trees from the database with different crop resources. This simulation can be displayed in 3-D to show the progress of the wood crop. All the data gathered during the simulation is presented as a detailed summary afterwards. This summary includes cost-benefit calculations and can be compared to those of previous runs to optimize the financial outcome of the timber harvest by exchanging crop resources or modifying their parameters.Keywords: Timber harvest, simulation, 3-D, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380773 Phytoremediation of Cd and Pb by Four Tropical Timber Species Grown on an Ex-tin Mine in Peninsular Malaysia
Authors: Lai Hoe Ang, Lai Kuen Tang, Wai Mun Ho, Ting Fui Hui, Gary W. Theseira
Abstract:
Contamination of heavy metals in tin tailings has caused an interest in the scientific approach of their remediation. One of the approaches is through phytoremediation, which is using tree species to extract the heavy metals from the contaminated soils. Tin tailings comprise of slime and sand tailings. This paper reports only on the finding of the four timber species namely Acacia mangium, Hopea odorata, Intsia palembanica and Swietenia macrophylla on the removal of cadmium (Cd) and lead (Pb) from the slime tailings. The methods employed for sampling and soil analysis are established methods. Six trees of each species were randomly selected from a 0.25 ha plot for extraction and determination of their heavy metals. The soil samples were systematically collected according to 5 x 5 m grid from each plot. Results showed that the concentration of heavy metals in soils and trees varied according to species. Higher concentration of heavy metals was found in the stem than the primary roots of all the species. A. Mangium accumulated the highest total amount of Pb per hectare basis.Keywords: Cd, Pb, Phytoremediation of slimetailings, timber species.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751772 Stakeholder Analysis: Who are the Key Actorsin Establishing and Developing Thai Independent Consumer Organizations?
Authors: P. Ondee, S. Pannarunothai
Abstract:
In Thailand, both the 1997 and the current 2007 Thai Constitutions have mentioned the establishment of independent organizations as a new mechanism to play a key role in proposing policy recommendations to national decision-makers in the interest of collective consumers. Over the last ten years, no independent organizations have yet been set up. Evidently, nobody could point out who should be key players in establishing provincial independent consumer bodies. The purpose of this study was to find definitive stakeholders in establishing and developing independent consumer bodies in a Thai context. This was a cross-sectional study between August and September 2007, using a postal questionnaire with telephone follow-up. The questionnaire was designed and used to obtain multiple stakeholder assessment of three key attributes (power, interest and influence). Study population was 153 stakeholders associated with policy decision-making, formulation and implementation processes of civil-based consumer protection in pilot provinces. The population covered key representatives from five sectors (academics, government officers, business traders, mass media and consumer networks) who participated in the deliberative forums at 10 provinces. A 49.7% response rate was achieved. Data were analyzed, comparing means of three stakeholder attributes and classification of stakeholder typology. The results showed that the provincial health officers were the definitive stakeholders as they had legal power, influence and interest in establishing and sustaining the independent consumer bodies. However, only a few key representatives of the provincial health officers expressed their own paradigm on the civil-based consumer protection. Most provincial health officers put their own standpoint of building civic participation at only a plan-implementation level. For effective policy implementation by the independent consumer bodies, the Thai government should provide budgetary support for the operation of the provincial health officers with their paradigm shift as well as their own clarified standpoint on corporate governance.
Keywords: Civic participation, civil society, consumerprotection, independent organization, policy decision-making, stakeholder analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941771 The Design of English Materials to communication the Identity of Amphawa District, Samut Songkram Province, for Sustainable Tourism
Authors: K. Praraththajariya
Abstract:
The main purpose of this research was to study how to communicate the identity of the Amphawa district, Samut Songkram province for sustainable tourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: 1. The identity of the Amphawa District, Samut Songkram province is the area controlled by Amphawa sub district (submunicipality). The working unit which runs and looks after Amphawa sub district administration is known as the Amphawa mayor. This establishment was built to be a resort for normal people and tourists visiting the Amphawa district near the Maekong River consisting of rest accommodations. Along the river there is a restaurant where food and drinks are served, rich mangrove forests, a learning center, fireflies and cork trees. The Amphawa district was built to honor and commemorate King Rama II and is where the greatest number of fireflies and cork trees can be seen in Thailand from May to October each year. 2. The communication of the identity of Amphawa District, Samut Songkram Province which the researcher could find and design to present in English materials can be summed up in 5 items: 1) The history of the Amphawa District, Samut Songkram province 2) The history of King Rama II Memorial Park 3) The identity of Amphawa Floating Market 4) The Learning center of Ecosystem: Fireflies and Cork Trees 5) How to keep Amphawa District, Samut Songkram Province for sustainable tourism.Keywords: Foreigner tourists, signified, semiotics, sustainable tourism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789770 Blind Source Separation based on the Estimation for the Number of the Blind Sources under a Dynamic Acoustic Environment
Authors: Takaaki Ishibashi
Abstract:
Independent component analysis can estimate unknown source signals from their mixtures under the assumption that the source signals are statistically independent. However, in a real environment, the separation performance is often deteriorated because the number of the source signals is different from that of the sensors. In this paper, we propose an estimation method for the number of the sources based on the joint distribution of the observed signals under two-sensor configuration. From several simulation results, it is found that the number of the sources is coincident to that of peaks in the histogram of the distribution. The proposed method can estimate the number of the sources even if it is larger than that of the observed signals. The proposed methods have been verified by several experiments.Keywords: blind source separation, independent component analysys, estimation for the number of the blind sources, voice activity detection, target extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301769 Evaluation of Superabsorbent Application on Corn Yield under Deficit Irrigation
Authors: D. Khodadadi Dehkordi
Abstract:
This research was planned in order to study the effect of drought stress and different levels of Superabsorbent and their effect on grain yield, biologic yield and harvest index. In this study, 3 different depths of irrigation were considered as the main treatment I1, I2, I3 as 100, 75 and 50 percent of water requirement of plants respectively and different levels of Superabsorbent were used as secondary treatment (S0, S1, S2 and S3, equal to 0 (control), 15, 30 and 45 gr/m2 respectively). According to the results, independent effects of irrigation and Superabsorbent treatments at 1% level on biologic and grain yield of corn were significant. In addition, independent effect of irrigation treatments at 5% level on harvest index was significant. But independent effect of Superabsorbent treatments on harvest index was not significant.Keywords: Corn, Deficit irrigation, Superabsorbent, Yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274768 Semi-Automatic Artifact Rejection Procedure Based on Kurtosis, Renyi's Entropy and Independent Component Scalp Maps
Authors: Antonino Greco, Nadia Mammone, Francesco Carlo Morabito, Mario Versaci
Abstract:
Artifact rejection plays a key role in many signal processing applications. The artifacts are disturbance that can occur during the signal acquisition and that can alter the analysis of the signals themselves. Our aim is to automatically remove the artifacts, in particular from the Electroencephalographic (EEG) recordings. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we try to enhance this technique proposing a new method based on the Renyi-s entropy. The performance of our method was tested and compared to the performance of the method in literature and the former proved to outperform the latter.
Keywords: Artifact, EEG, Renyi's entropy, kurtosis, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854767 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.
Keywords: Decision tree, water quality, water pollution, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258766 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA
Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz
Abstract:
This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH– independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.
Keywords: DNA & RNA Models, Relative Rates, Reactivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395765 Antecedent and Outcome of New Product Development in the Leather Industry, Bangkok and Vicinity, Thailand
Authors: Bundit Pungnirund
Abstract:
The purposes of this research were to develop and to monitor the antecedent factors which directly affected the success rate of new product development. This was a case study of the leather industry in Bangkok, Thailand. A total of 350 leather factories were used as a sample group. The findings revealed that the new product development model was harmonized with the empirical data at the acceptable level, the statistic values are: χ2=6.45, df= 7, p-value = .48856; RMSEA = .000; RMR = .0029; AGFI = .98; GFI = 1.00. The independent variable that directly influenced the dependent variable at the highest level was marketing outcome which had a influence coefficient at 0.32 and the independent variables that indirectly influenced the dependent variables at the highest level was a clear organization policy which had a influence coefficient at 0.17, whereas, all independent variables can predict the model at 48 percent.
Keywords: Antecedent, New Product Development, Leather Industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734764 MIM: A Species Independent Approach for Classifying Coding and Non-Coding DNA Sequences in Bacterial and Archaeal Genomes
Authors: Achraf El Allali, John R. Rose
Abstract:
A number of competing methodologies have been developed to identify genes and classify DNA sequences into coding and non-coding sequences. This classification process is fundamental in gene finding and gene annotation tools and is one of the most challenging tasks in bioinformatics and computational biology. An information theory measure based on mutual information has shown good accuracy in classifying DNA sequences into coding and noncoding. In this paper we describe a species independent iterative approach that distinguishes coding from non-coding sequences using the mutual information measure (MIM). A set of sixty prokaryotes is used to extract universal training data. To facilitate comparisons with the published results of other researchers, a test set of 51 bacterial and archaeal genomes was used to evaluate MIM. These results demonstrate that MIM produces superior results while remaining species independent.Keywords: Coding Non-coding Classification, Entropy, GeneRecognition, Mutual Information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726763 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: Bootstrap, Edgeworth approximation, independent and Identical distributed, quantile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 440762 Strong Law of Large Numbers for *- Mixing Sequence
Authors: Bainian Li, Kongsheng Zhang
Abstract:
Strong law of large numbers and complete convergence for sequences of *-mixing random variables are investigated. In particular, Teicher-s strong law of large numbers for independent random variables are generalized to the case of *-mixing random sequences and extended to independent and identically distributed Marcinkiewicz Law of large numbers for *-mixing.
Keywords: mixing squences, strong law of large numbers, martingale differences, Lacunary System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295761 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues
Authors: Ayşe Dilek Maden
Abstract:
For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.
Keywords: Degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200760 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: 'Reddit'
Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell
Abstract:
Native Language Identification is one of the growing subfields in Natural Language Processing (NLP). The task of Native Language Identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL) and then the trained models are evaluated on a different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and Logistic Regression. Results show that content-based features are more accurate and robust than content independent ones when tested within corpus and across corpus.
Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413759 [a, b]-Factors Excluding Some Specified Edges In Graphs
Authors: Sizhong Zhou, Bingyuan Pu
Abstract:
Let G be a graph of order n, and let a, b and m be positive integers with 1 ≤ a<b. An [a, b]-factor of G is defined as a spanning subgraph F of G such that a ≤ dF (x) ≤ b for each x ∈ V (G). In this paper, it is proved that if n ≥ (a+b−1+√(a+b+1)m−2)2−1 b and δ(G) > n + a + b − 2 √bn+ 1, then for any subgraph H of G with m edges, G has an [a, b]-factor F such that E(H)∩ E(F) = ∅. This result is an extension of thatof Egawa [2].
Keywords: graph, minimum degree, [a, b]-factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099758 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles
Authors: Omer Nebil Yaveroglu, Tolga Can
Abstract:
In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612757 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.
Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074756 An Enhanced Distributed System to improve theTime Complexity of Binary Indexed Trees
Authors: Ahmed M. Elhabashy, A. Baes Mohamed, Abou El Nasr Mohamad
Abstract:
Distributed Computing Systems are usually considered the most suitable model for practical solutions of many parallel algorithms. In this paper an enhanced distributed system is presented to improve the time complexity of Binary Indexed Trees (BIT). The proposed system uses multi-uniform processors with identical architectures and a specially designed distributed memory system. The analysis of this system has shown that it has reduced the time complexity of the read query to O(Log(Log(N))), and the update query to constant complexity, while the naive solution has a time complexity of O(Log(N)) for both queries. The system was implemented and simulated using VHDL and Verilog Hardware Description Languages, with xilinx ISE 10.1, as the development environment and ModelSim 6.1c, similarly as the simulation tool. The simulation has shown that the overhead resulting by the wiring and communication between the system fragments could be fairly neglected, which makes it applicable to practically reach the maximum speed up offered by the proposed model.
Keywords: Binary Index Tree (BIT), Least Significant Bit (LSB), Parallel Adder (PA), Very High Speed Integrated Circuits HardwareDescription Language (VHDL), Distributed Parallel Computing System(DPCS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769755 Implementation of a Serializer to Represent PHP Objects in the Extensible Markup Language
Authors: Lidia N. Hernández-Piña, Carlos R. Jaimez-González
Abstract:
Interoperability in distributed systems is an important feature that refers to the communication of two applications written in different programming languages. This paper presents a serializer and a de-serializer of PHP objects to and from XML, which is an independent library written in the PHP programming language. The XML generated by this serializer is independent of the programming language, and can be used by other existing Web Objects in XML (WOX) serializers and de-serializers, which allow interoperability with other object-oriented programming languages.Keywords: Interoperability, PHP object serialization, PHP to XML, web objects in XML, WOX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752754 Extraction of Symbolic Rules from Artificial Neural Networks
Authors: S. M. Kamruzzaman, Md. Monirul Islam
Abstract:
Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615753 Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis
Authors: Mashitah Mohd Hussain, Salleh Serwan, Zuhaina Hj Zakaria
Abstract:
This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.Keywords: Electrical Distribution System, Power Flow Solution, Distribution Network, Independent Component Analysis, Newton Raphson, Power System Simulation for Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914752 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines
Authors: Mrs.K.Kavitha, S.Arivazhagan
Abstract:
A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.
Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521751 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, capsule network, capacity optimization, character recognition, data augmentation; semantic segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 700750 Quantifying Landscape Connectivity: A GIS-based Approach
Authors: Siqing S. Chen
Abstract:
Landscape connectivity combines a description of the physical structure of the landscape with special species- response to that structure, which forms the theoretical background of applying landscape connectivity principles in the practices of landscape planning and design. In this study, a residential development project in the southern United States was used to explore the meaning of landscape connectivity and its application in town planning. The vast rural landscape in the southern United States is conspicuously characterized by the hedgerow trees or groves. The patchwork landscape of fields surrounded by high hedgerows is a traditional and familiar feature of the American countryside. Hedgerows are in effect linear strips of trees, groves, or woodlands, which are often critical habitats for wildlife and important for the visual quality of the landscape. Based on geographic information system (GIS) and statistical analysis (FRAGSTAT), this study attempts to quantify the landscape connectivity characterized by hedgerows in south Alabama where substantial areas of authentic hedgerow landscape are being urbanized due to the ever expanding real estate industry and high demand for new residential development. The results of this study shed lights on how to balance the needs of new urban development and biodiversity conservation by maintaining a higher level of landscape connectivity, thus will inform the design intervention.Keywords: Biodiversity, Connectivity, Landscape planning, GIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4497749 Kinematic Parameter-Independent Modeling and Measuring of Three-Axis Machine Tools
Authors: Yung-Yuan Hsu
Abstract:
The primary objective of this paper was to construct a “kinematic parameter-independent modeling of three-axis machine tools for geometric error measurement" technique. Improving the accuracy of the geometric error for three-axis machine tools is one of the machine tools- core techniques. This paper first applied the traditional method of HTM to deduce the geometric error model for three-axis machine tools. This geometric error model was related to the three-axis kinematic parameters where the overall errors was relative to the machine reference coordinate system. Given that the measurement of the linear axis in this model should be on the ideal motion axis, there were practical difficulties. Through a measurement method consolidating translational errors and rotational errors in the geometric error model, we simplified the three-axis geometric error model to a kinematic parameter-independent model. Finally, based on the new measurement method corresponding to this error model, we established a truly practical and more accurate error measuring technique for three-axis machine tools.Keywords: Three-axis machine tool, Geometric error, HTM, Error measuring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121748 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833747 A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer
Authors: Frank Emmert Streib, Matthias Dehmer, Jing Liu, Max Mühlhauser
Abstract:
In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.Keywords: Graph similarity, DNA microarray data, cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755