Search results for: Displacement deviation analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9107

Search results for: Displacement deviation analysis

9017 Coconut Shells as the Alternative Equipment for Foot Reflexology

Authors: Nichanant Sermsri, Chananchida Yuktirat

Abstract:

This research was the experimental research. Its purpose was to find out how coconut shells can be adapted to be equipment for foot and calf reflexology. The sample group was 58 female street vendors in Thewet Market, Bangkok, selected by selection criteria and voluntary. The data collecting tool was the Visual Analogue Scale. The massaging tool made from coconut shells was the key equipment for this research. The research team assessed the level of exhaustion and heart rate among sample group before and after the massage, then analyzed the data by mean, standard deviation and paired sample t-test.

We found out from the research that

  1. The level of exhaustion decreased 4.529 levels after the massage and the standard deviation was 1.6195. The heart rates went down 11.67 times/minute and the standard deviation was 6.742.
  2. The level of exhaustion and heart rate after the massage decreased with the statistically significance at 0.01

Keywords: Coconut Shells, Foot Massage, Foot Reflexology, Massaging Plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
9016 Transient Analysis of Central Region Void Fraction in a 3x3 Rod Bundle under Bubbly and Cap/Slug Flows

Authors: Ya-Chi Yu, Pei-Syuan Ruan, Shao-Wen Chen, Yu-Hsien Chang, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih

Abstract:

This study analyzed the transient signals of central region void fraction of air-water two-phase flow in a 3x3 rod bundle. Experimental tests were carried out utilizing a vertical rod bundle test section along with a set of air-water supply/flow control system, and the transient signals of the central region void fraction were collected through the electrical conductivity sensors as well as visualized via high speed photography. By converting the electric signals, transient void fraction can be obtained through the voltage ratios. With a fixed superficial water velocity (Jf=0.094 m/s), two different superficial air velocities (Jg=0.094 m/s and 0.236 m/s) were tested and presented, which were corresponding to the flow conditions of bubbly flows and cap/slug flows, respectively. The time averaged central region void fraction was obtained as 0.109-0.122 with 0.028 standard deviation for the selected bubbly flow and 0.188-0.221with 0.101 standard deviation for the selected cap/slug flow, respectively. Through Fast Fourier Transform (FFT) analysis, no clear frequency peak was found in bubbly flow, while two dominant frequencies were identified around 1.6 Hz and 2.5 Hz in the present cap/slug flow.

Keywords: Central region, rod bundles, transient void fraction, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
9015 Video Quality assessment Measure with a Neural Network

Authors: H. El Khattabi, A. Tamtaoui, D. Aboutajdine

Abstract:

In this paper, we present the video quality measure estimation via a neural network. This latter predicts MOS (mean opinion score) by providing height parameters extracted from original and coded videos. The eight parameters that are used are: the average of DFT differences, the standard deviation of DFT differences, the average of DCT differences, the standard deviation of DCT differences, the variance of energy of color, the luminance Y, the chrominance U and the chrominance V. We chose Euclidean Distance to make comparison between the calculated and estimated output.

Keywords: video, neural network MLP, subjective quality, DCT, DFT, Retropropagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
9014 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: Finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
9013 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

Authors: H. B. Kekre, Kavita Patil

Abstract:

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3705
9012 Thermal Comfort and Energy Saving Evaluation of a Combined System in an Office Room Using Displacement Ventilation

Authors: A. Q. Ahmed, S. Gao

Abstract:

In this paper, the energy saving and human thermal comfort in a typical office room are investigated. The impact of a combined system of exhaust inlet air with light slots located at the ceiling level in a room served by displacement ventilation system is numerically modelled. Previous experimental data are used to validate the Computational Fluid Dynamic (CFD) model. A case study of simulated office room includes two seating occupants, two computers, two data loggers and four lamps. The combined system is located at the ceiling level above the heat sources. A new method of calculation for the cooling coil load in Stratified Air Distribution (STRAD) system is used in this study. The results show that 47.4% energy saving of space cooling load can be achieved by combing the exhaust inlet air with light slots at the ceiling level above the heat sources.

Keywords: Air conditioning, Displacement ventilation, Energy saving, Thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
9011 Deviations and Defects of the Sub-Task’s Requirements in Construction Projects

Authors: Abdullah Almusharraf, Andrew Whyte

Abstract:

The sub-task pattern in terms of deviations and defects should be identified and understood in order to improve the quality of practices in construction projects. Therefore, sub-task susceptibility to exposure to deviations and defects has been evaluated and classified via six classifications proposed in this study. Thirty-four case studies of specific sub-tasks (from compression members in constructed concrete structures) were collected from seven construction projects in order to examine the study’s proposed classifications. The study revealed that the sub-task has a high sensitivity to deviation, where 91% of the cases were recorded as deviations; however, only 19% of cases were recorded as defects. Other findings were that the actual work during the execution process is a high source of deviation for this sub-task (74%), while only 26% of the source of deviation was due to both design documentation and the actual work. These findings significantly imply that the study’s proposed classifications could be used to determine the pattern of each sub-task and develop proactive actions to overcome issues of sub-task deviations and defects.

Keywords: Sub-tasks, deviations, defects, quality, construction projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
9010 Parametric Analysis in the Electronic Sensor Frequency Adjustment Process

Authors: Rungchat Chompu-Inwai, Akararit Charoenkasemsuk

Abstract:

The use of electronic sensors in the electronics industry has become increasingly popular over the past few years, and it has become a high competition product. The frequency adjustment process is regarded as one of the most important process in the electronic sensor manufacturing process. Due to inaccuracies in the frequency adjustment process, up to 80% waste can be caused due to rework processes; therefore, this study aims to provide a preliminary understanding of the role of parameters used in the frequency adjustment process, and also make suggestions in order to further improve performance. Four parameters are considered in this study: air pressure, dispensing time, vacuum force, and the distance between the needle tip and the product. A full factorial design for experiment 2k was considered to determine those parameters that significantly affect the accuracy of the frequency adjustment process, where a deviation in the frequency after adjustment and the target frequency is expected to be 0 kHz. The experiment was conducted on two levels, using two replications and with five center-points added. In total, 37 experiments were carried out. The results reveal that air pressure and dispensing time significantly affect the frequency adjustment process. The mathematical relationship between these two parameters was formulated, and the optimal parameters for air pressure and dispensing time were found to be 0.45 MPa and 458 ms, respectively. The optimal parameters were examined by carrying out a confirmation experiment in which an average deviation of 0.082 kHz was achieved.

Keywords: Design of Experiment, Electronic Sensor, Frequency Adjustment, Parametric Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
9009 Static Study of Piezoelectric Bimorph Beams with Delamination Zone

Authors: A. Zemirline, M. Ouali, A. Mahieddine

Abstract:

The FOSDT (the First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed.

Keywords: Beam, Delamination, Piezoelectricity, Static.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
9008 Dynamic Ultrasound Scatterer Simulation Model Using Field-II and FEM for Speckle Tracking

Authors: Aws Al-azawi, John Soraghan

Abstract:

There is a growing interest in the use of ultrasonic speckle tracking for biomedical image formation of tissue deformation. Speckle tracking is angle independent and has an ability to differentiate soft tissue into benign and malignant regions. In this paper a simulation model for dynamic ultrasound scatterer is presented. The model composes Field-II ultrasonic scatterers and FEM (ANSYS-11) nodes as a regional tissue deformation. A performance evaluation is presented on axial displacement and strain fields estimation of a uniformly elastic model, using speckle tracking based 1D cross-correlation of optimally segmented pre and post-deformation frames. Optimum correlation window length is investigated in terms of highest signal-to-noise ratio (SNR) for a selected region of interest of a smoothed displacement field. Finally, gradient based strain field of both smoothed and non-smoothed displacement fields are compared. Simulation results from the model are shown to compare favorably with FEM results.

Keywords: Speckle tracking, tissue deformation, ultrasonic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3016
9007 Photomechanical Analysis of Wooden Testing Bodies under Flexural Loadings

Authors: J. Gazzola, I. M. Dal Fabbro, J. Soriano, M. V. G. Silva, S. Rodrigues

Abstract:

Application of wood in rural construction is diffused all around the world since remote times. However, its inclusion in structural design deserves strong support from broad knowledge of material properties. The pertinent literature reveals the application of optical methods in determining the complete field displacement on bodies exhibiting regular as well as irregular surfaces. The use of moiré techniques in experimental mechanics consists in analyzing the patterns generated on the body surface before and after deformation. The objective of this research work is to study the qualitative deformation behavior of wooden testing specimens under specific loading situations. The experiment setup follows the literature description of shadow moiré methods. Results indicate strong anisotropy influence of the generated displacement field. Important qualitative as well as quantitative stress and strain distribution were obtained wooden members which are applicable to rural constructions.

Keywords: Moiré methods, wooden structural material, rural constructions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
9006 The Performance Analysis of Error Saturation Nonlinearity LMS in Impulsive Noise based on Weighted-Energy Conservation

Authors: T Panigrahi, G Panda, Mulgrew

Abstract:

This paper introduces a new approach for the performance analysis of adaptive filter with error saturation nonlinearity in the presence of impulsive noise. The performance analysis of adaptive filters includes both transient analysis which shows that how fast a filter learns and the steady-state analysis gives how well a filter learns. The recursive expressions for mean-square deviation(MSD) and excess mean-square error(EMSE) are derived based on weighted energy conservation arguments which provide the transient behavior of the adaptive algorithm. The steady-state analysis for co-related input regressor data is analyzed, so this approach leads to a new performance results without restricting the input regression data to be white.

Keywords: Error saturation nonlinearity, transient analysis, impulsive noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
9005 Conceptual Investigation of Short-Columns and Masonary Infill Frames Effect in the Earthquakes

Authors: Ebrahim Khalilzadeh Vahidi, Maryam Mokhtari Malekabadi

Abstract:

This paper highlights the importance of the selection of the building-s wall material,and the shortcomings of the most commonly used framed structures with masonry infills .The objective of this study is investigating the behavior of infill walls as structural components in existing structures.Structural infill walls are very important in structural behavior under earthquake effects. Structural capacity under the effect of earthquake,displacement and relative story displacement are affected by the structural irregularities .The presence of nonstructural masonry infill walls can modify extensively the global seismic behavior of framed buildings .The stability and integrity of reinforced concrete frames are enhanced by masonry infill walls. Masonry infill walls alter displacement and base shear of the frame as well. Short columns have great importance during earthquakes,because their failure may lead to additional structural failures and result in total building collapse. Consequently the effects of short columns are considered in this study.

Keywords: Short columns , Infill masonary wall , Buildings , Earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3420
9004 Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time

Authors: Soo-young Ye, Gi-Ryon Kim, Dong-Keun Jung, Seong-wan Baik, Gye-rok Jeon

Abstract:

In this paper, algorithm estimating the blood pressure was proposed using the pulse transit time (PTT) as a more convenient method of measuring the blood pressure. After measuring ECG and pressure pulse, and photoplethysmography, the PTT was calculated from the acquired signals. Thereafter, the system to indirectly measure the systolic pressure and the diastolic pressure was composed using the statistic method. In comparison between the blood pressure indirectly measured by proposed algorithm estimating the blood pressure and real blood pressure measured by conventional sphygmomanometer, the systolic pressure indicates the mean error of ±3.24mmHg and the standard deviation of 2.53mmHg, while the diastolic pressure indicates the satisfactory result, that is, the mean error of ±1.80mmHg and the standard deviation of 1.39mmHg. These results are satisfied with the regulation of ANSI/AAMI for certification of sphygmomanometer that real measurement error value should be within the mean error of ±5mmHg and the standard deviation of 8mmHg. These results are suggest the possibility of applying to portable and long time blood pressure monitoring system hereafter.

Keywords: Blood pressure, Systolic, Diastolic, Pulse transit time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6533
9003 Experimental Study of Dynamic Characteristics of the Electromagnet Actuators with Linear Movement

Authors: Vultchan T. Gueorgiev, Racho M. Ivanov, Ivan S. Yatchev, Krastyo L. Hinov

Abstract:

An approach for experimental measurement of the dynamic characteristics of linear electromagnet actuators is presented. It uses accelerometer sensor to register the armature acceleration. The velocity and displacement of the moving parts can be obtained by integration of the acceleration results. The armature movement of permanent magnet linear actuator is acquired using this technique. The results are analyzed and the performance of the supposed approach is compared with the most commonly used experimental setup where the displacement of the armature vs. time is measured instead of its acceleration.

Keywords: Dynamic characteristics, dynamic simulation, linearactuators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
9002 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/ deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.

Keywords: Epilepsy, Seizure, Phase Correlation, Fluctuation, Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
9001 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modeling in Frustum Confining Vessel

Authors: Seyed Abolhasan Naeini, M. Mortezaee

Abstract:

Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vessel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firuzkuh, Iran. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.

Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438
9000 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique

Authors: Mandeep Kumar, Hari Singh

Abstract:

The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.

Keywords: ANOVA, DOE, inconel, machining, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
8999 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)

Authors: Zia R. Tahir, P. Mandal

Abstract:

This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0^o/+45^o/-45^o/0^o] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.

Keywords: CFRP Composite Cylindrical Shell, Asymmetric Meshing Technique, Primary Buckling, Secondary Buckling, Linear Eigenvalue Analysis, Non-linear Riks Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
8998 Complexity Analysis of Some Known Graph Coloring Instances

Authors: Jeffrey L. Duffany

Abstract:

Graph coloring is an important problem in computer science and many algorithms are known for obtaining reasonably good solutions in polynomial time. One method of comparing different algorithms is to test them on a set of standard graphs where the optimal solution is already known. This investigation analyzes a set of 50 well known graph coloring instances according to a set of complexity measures. These instances come from a variety of sources some representing actual applications of graph coloring (register allocation) and others (mycieleski and leighton graphs) that are theoretically designed to be difficult to solve. The size of the graphs ranged from ranged from a low of 11 variables to a high of 864 variables. The method used to solve the coloring problem was the square of the adjacency (i.e., correlation) matrix. The results show that the most difficult graphs to solve were the leighton and the queen graphs. Complexity measures such as density, mobility, deviation from uniform color class size and number of block diagonal zeros are calculated for each graph. The results showed that the most difficult problems have low mobility (in the range of .2-.5) and relatively little deviation from uniform color class size.

Keywords: graph coloring, complexity, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
8997 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: Gypsum board, anchor, shear test, cyclic loading, load-unload curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
8996 Multidimensional Compromise Programming Evaluation of Digital Commerce Websites

Authors: C. Ardil

Abstract:

Multidimensional compromise programming evaluation of digital commerce websites is essential not only to have recommendations for improvement, but also to make comparisons with global business competitors. This research provides a multidimensional decision making model that prioritizes the objective criteria weights of various commerce websites using multidimensional compromise solution. Evaluation of digital commerce website quality can be considered as a complex information system structure including qualitative and quantitative factors for a multicriteria decision making problem. The proposed multicriteria decision making approach mainly consists of three sequential steps for the selection problem. In the first step, three major different evaluation criteria are characterized for website ranking problem. In the second step, identified critical criteria are weighted using the standard deviation procedure. In the third step, the multidimensional compromise programming is applied to rank the digital commerce websites.

Keywords: Standard deviation, commerce website, website evaluation, multicriteria decision making, multicriteria compromise programming, website quality, multidimensional decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
8995 Mathematics Anxiety among Male and Female Students

Authors: Wern Lin Yeo, Choo Kim Tan, Sook Ling Lew

Abstract:

The purpose of this study is to determine the relationship of anxiety level between male and female undergraduates at a private university in Malaysia. Convenient sampling method used in this study in which the students were selected based on the grouping assigned by the faculty. There were 214 undergraduates who registered the probability courses had participated in this study. Mathematics Anxiety Rating Scale (MARS) was the instrument used in study which used to determine students’ anxiety level towards probability. Reliability and validity of instrument was done before the major study was conducted. In the major study, students were given briefing about the study conducted. Participation of this study was voluntary. Students were given consent form to determine whether they agree to participate in the study. Duration of two weeks was given for students to complete the given online questionnaire. The data collected will be analyzed using Statistical Package for the Social Sciences (SPSS) to determine the level of anxiety. There were three anxiety level, i.e., low, average and high. Students’ anxiety level was determined based on their scores obtained compared with the mean and standard deviation. If the scores obtained were below mean and standard deviation, the anxiety level was low. If the scores were at below and above the mean and between one standard deviation, the anxiety level was average. If the scores were above the mean and greater than one standard deviation, the anxiety level was high. Results showed that both of genders were having average anxiety level. Among low, average and high anxiety level, frequency of males were found to be higher as compared to females. Hence, the mean values obtained for males (M = 3.62) was higher than females (M = 3.42). In order to be significant of anxiety level among the gender, the p-value should be less than .05. The p-value obtained in this study was .117. However, this value was greater than .05. Thus, there was no significant difference of anxiety level among the gender. In other words, there was no relationship of anxiety level with the gender.

Keywords: Anxiety level, gender, mathematics anxiety, probability and statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4235
8994 Analysis of Plates with Varying Rigidities Using Finite Element Method

Authors: Karan Modi, Rajesh Kumar, Jyoti Katiyar, Shreya Thusoo

Abstract:

This paper presents Finite Element Method (FEM) for analyzing the internal responses generated in thin rectangular plates with various edge conditions and rigidity conditions. Comparison has been made between the FEM (ANSYS software) results for displacement, stresses and moments generated with and without the consideration of hole in plate and different aspect ratios. In the end comparison for responses in plain and composite square plates has been studied.

Keywords: ANSYS, Finite Element Method, Plates, Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
8993 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the Isection. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted in a high shear and almost zero moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: Strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
8992 Assessment of the Energy Balance Method in the Case of Masonry Domes

Authors: M. M. Sadeghi, S. Vahdani

Abstract:

Masonry dome structures had been widely used for covering large spans in the past. The seismic assessment of these historical structures is very complicated due to the nonlinear behavior of the material, their rigidness, and special stability configuration. The assessment method based on energy balance concept, as well as the standard pushover analysis, is used to evaluate the effectiveness of these methods in the case of masonry dome structures. The Soltanieh dome building is used as an example to which two methods are applied. The performance points are given from superimposing the capacity, and demand curves in Acceleration Displacement Response Spectra (ADRS) and energy coordination are compared with the nonlinear time history analysis as the exact result. The results show a good agreement between the dynamic analysis and the energy balance method, but standard pushover method does not provide an acceptable estimation.

Keywords: Energy balance method, pushover analysis, time history analysis, masonry dome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
8991 New Features for Specific JPEG Steganalysis

Authors: Johann Barbier, Eric Filiol, Kichenakoumar Mayoura

Abstract:

We present in this paper a new approach for specific JPEG steganalysis and propose studying statistics of the compressed DCT coefficients. Traditionally, steganographic algorithms try to preserve statistics of the DCT and of the spatial domain, but they cannot preserve both and also control the alteration of the compressed data. We have noticed a deviation of the entropy of the compressed data after a first embedding. This deviation is greater when the image is a cover medium than when the image is a stego image. To observe this deviation, we pointed out new statistic features and combined them with the Multiple Embedding Method. This approach is motivated by the Avalanche Criterion of the JPEG lossless compression step. This criterion makes possible the design of detectors whose detection rates are independent of the payload. Finally, we designed a Fisher discriminant based classifier for well known steganographic algorithms, Outguess, F5 and Hide and Seek. The experiemental results we obtained show the efficiency of our classifier for these algorithms. Moreover, it is also designed to work with low embedding rates (< 10-5) and according to the avalanche criterion of RLE and Huffman compression step, its efficiency is independent of the quantity of hidden information.

Keywords: Compressed frequency domain, Fisher discriminant, specific JPEG steganalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
8990 Comparative Study of Equivalent Linear and Non-Linear Ground Response Analysis for Rapar District of Kutch, India

Authors: Kulin Dave, Kapil Mohan

Abstract:

Earthquakes are considered to be the most destructive rapid-onset disasters human beings are exposed to. The amount of loss it brings in is sufficient to take careful considerations for designing of structures and facilities. Seismic Hazard Analysis is one such tool which can be used for earthquake resistant design. Ground Response Analysis is one of the most crucial and decisive steps for seismic hazard analysis. Rapar district of Kutch, Gujarat falls in Zone 5 of earthquake zone map of India and thus has high seismicity because of which it is selected for analysis. In total 8 bore-log data were studied at different locations in and around Rapar district. Different soil engineering properties were analyzed and relevant empirical correlations were used to calculate maximum shear modulus (Gmax) and shear wave velocity (Vs) for the soil layers. The soil was modeled using Pressure-Dependent Modified Kodner Zelasko (MKZ) model and the reference curve used for fitting was Seed and Idriss (1970) for sand and Darendeli (2001) for clay. Both Equivalent linear (EL), as well as Non-linear (NL) ground response analysis, has been carried out with Masing Hysteretic Re/Unloading formulation for comparison. Commercially available DEEPSOIL v. 7.0 software is used for this analysis. In this study an attempt is made to quantify ground response regarding generated acceleration time-history at top of the soil column, Response spectra calculation at 5 % damping and Fourier amplitude spectrum calculation. Moreover, the variation of Peak Ground Acceleration (PGA), Maximum Displacement, Maximum Strain (in %), Maximum Stress Ratio, Mobilized Shear Stress with depth is also calculated. From the study, PGA values estimated in rocky strata are nearly same as bedrock motion and marginal amplification is observed in sandy silt and silty clays by both analyses. The NL analysis gives conservative results of maximum displacement as compared to EL analysis. Maximum strain predicted by both studies is very close to each other. And overall NL analysis is more efficient and realistic because it follows the actual hyperbolic stress-strain relationship, considers stiffness degradation and mobilizes stresses generated due to pore water pressure.

Keywords: DEEPSOIL v 7.0, Ground Response Analysis, Pressure-Dependent Modified KodnerZelasko (MKZ) model, Response Spectra, Shear wave velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
8989 Performance Evaluation of Intelligent Controllers for AGC in Thermal Systems

Authors: Muhammad Muhsin, Abhishek Mishra, Shreyansh Vishwakarma, K. Dasaratha Babu, Anudevi Samuel

Abstract:

In an interconnected power system, any sudden small load perturbation in any of the interconnected areas causes the deviation of the area frequencies, the tie line power and voltage deviation at the generator terminals. This paper deals with the study of performance of intelligent Fuzzy Logic controllers coupled with Conventional Controllers (PI and PID) for Load Frequency Control. For analysis, an isolated single area and interconnected two area thermal power systems with and without generation rate constraints (GRC) have been considered. The studies have been performed with conventional PI and PID controllers and their performance has been compared with intelligent fuzzy controllers. It can be demonstrated that these controllers can successfully bring back the excursions in area frequencies and tie line powers within acceptable limits in smaller time periods and with lesser transients as compared to the performance of conventional controllers under same load disturbance conditions. The simulations in MATLAB have been used for comparative studies.

Keywords: Area Control Error, Fuzzy Logic, Generation rate constraint, Load Frequency, Tie line Power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
8988 Design and Analysis of Piping System with Supports Using CAESAR-II

Authors: M. Jamuna Rani, K. Ramanathan

Abstract:

A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.

Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5079