Search results for: Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3610

Search results for: Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation

3520 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Authors: Amany M. El-Zonkoly, Hussein Desouki

Abstract:

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
3519 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms

Authors: Prabhakar Sathujoda

Abstract:

Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.

Keywords: Continuous wavelet transform, flexible coupling, rotor system, sub critical speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
3518 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: Continuous wavelet transform, convolution neural network, gated recurrent unit, health indicators, remaining useful life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
3517 Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks

Authors: Peyman Shadman Heidari, Mohammad Khorasani

Abstract:

The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.

Keywords: Adaptive Neural Network Fuzzy Inference System, Wavelet Packet Transform, Response Spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
3516 Analysis of Precipitation Time Series of Urban Centers of Northeastern Brazil using Wavelet Transform

Authors: Celso A. G. Santos, Paula K. M. M. Freire

Abstract:

The urban centers within northeastern Brazil are mainly influenced by the intense rainfalls, which can occur after long periods of drought, when flood events can be observed during such events. Thus, this paper aims to study the rainfall frequencies in such region through the wavelet transform. An application of wavelet analysis is done with long time series of the total monthly rainfall amount at the capital cities of northeastern Brazil. The main frequency components in the time series are studied by the global wavelet spectrum and the modulation in separated periodicity bands were done in order to extract additional information, e.g., the 8 and 16 months band was examined by an average of all scales, giving a measure of the average annual variance versus time, where the periods with low or high variance could be identified. The important increases were identified in the average variance for some periods, e.g. 1947 to 1952 at Teresina city, which can be considered as high wet periods. Although, the precipitation in those sites showed similar global wavelet spectra, the wavelet spectra revealed particular features. This study can be considered an important tool for time series analysis, which can help the studies concerning flood control, mainly when they are applied together with rainfall-runoff simulations.

Keywords: rainfall data, urban center, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
3515 An Efficient Hamiltonian for Discrete Fractional Fourier Transform

Authors: Sukrit Shankar, Pardha Saradhi K., Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fractional Fourier Transform and show that the eigenvectors of the proposed matrix has a higher degree of correlation with the Hermite Gaussian functions. Also, the proposed matrix is shown to give better Fractional Fourier responses with various transform orders for different signals.

Keywords: Fractional Fourier Transform, Hamiltonian, Eigen Vectors, Discrete Hermite Gaussians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
3514 Robust Detection of R-Wave Using Wavelet Technique

Authors: Awadhesh Pachauri, Manabendra Bhuyan

Abstract:

Electrocardiogram (ECG) is considered to be the backbone of cardiology. ECG is composed of P, QRS & T waves and information related to cardiac diseases can be extracted from the intervals and amplitudes of these waves. The first step in extracting ECG features starts from the accurate detection of R peaks in the QRS complex. We have developed a robust R wave detector using wavelets. The wavelets used for detection are Daubechies and Symmetric. The method does not require any preprocessing therefore, only needs the ECG correct recordings while implementing the detection. The database has been collected from MIT-BIH arrhythmia database and the signals from Lead-II have been analyzed. MatLab 7.0 has been used to develop the algorithm. The ECG signal under test has been decomposed to the required level using the selected wavelet and the selection of detail coefficient d4 has been done based on energy, frequency and cross-correlation analysis of decomposition structure of ECG signal. The robustness of the method is apparent from the obtained results.

Keywords: ECG, P-QRS-T waves, Wavelet Transform, Hard Thresholding, R-wave Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
3513 Applying Wavelet Entropy Principle in Fault Classification

Authors: S. El Safty, A. El-Zonkoly

Abstract:

The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropy of such decompositions is analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault.

Keywords: Fault classification, wavelet transform, waveletentropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
3512 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine

Abstract:

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Keywords: Color image, grayscale image, singular values decomposition, lifting wavelet transform, image watermarking, watermark, secure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
3511 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature

Authors: Iman Iraei, Mina Sharifi

Abstract:

A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.

Keywords: Mean shift, object tracking, blur extent, wavelet transform, motion blur.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
3510 A Scheme of Model Verification of the Concurrent Discrete Wavelet Transform (DWT) for Image Compression

Authors: Kamrul Hasan Talukder, Koichi Harada

Abstract:

The scientific community has invested a great deal of effort in the fields of discrete wavelet transform in the last few decades. Discrete wavelet transform (DWT) associated with the vector quantization has been proved to be a very useful tool for the compression of image. However, the DWT is very computationally intensive process requiring innovative and computationally efficient method to obtain the image compression. The concurrent transformation of the image can be an important solution to this problem. This paper proposes a model of concurrent DWT for image compression. Additionally, the formal verification of the model has also been performed. Here the Symbolic Model Verifier (SMV) has been used as the formal verification tool. The system has been modeled in SMV and some properties have been verified formally.

Keywords: Computation Tree Logic, Discrete WaveletTransform, Formal Verification, Image Compression, Symbolic Model Verifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
3509 Lower Bound of Time Span Product for a General Class of Signals in Fractional Fourier Domain

Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma

Abstract:

Fractional Fourier Transform is a generalization of the classical Fourier Transform which is often symbolized as the rotation in time- frequency plane. Similar to the product of time and frequency span which provides the Uncertainty Principle for the classical Fourier domain, there has not been till date an Uncertainty Principle for the Fractional Fourier domain for a generalized class of finite energy signals. Though the lower bound for the product of time and Fractional Fourier span is derived for the real signals, a tighter lower bound for a general class of signals is of practical importance, especially for the analysis of signals containing chirps. We hence formulate a mathematical derivation that gives the lower bound of time and Fractional Fourier span product. The relation proves to be utmost importance in taking the Fractional Fourier Transform with adaptive time and Fractional span resolutions for a varied class of complex signals.

Keywords: Fractional Fourier Transform, uncertainty principle, Fractional Fourier Span, amplitude, phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
3508 Improved Approximation to the Derivative of a Digital Signal Using Wavelet Transforms for Crosstalk Analysis

Authors: S. P. Kozaitis, R. L. Kriner

Abstract:

The information revealed by derivatives can help to better characterize digital near-end crosstalk signatures with the ultimate goal of identifying the specific aggressor signal. Unfortunately, derivatives tend to be very sensitive to even low levels of noise. In this work we approximated the derivatives of both quiet and noisy digital signals using a wavelet-based technique. The results are presented for Gaussian digital edges, IBIS Model digital edges, and digital edges in oscilloscope data captured from an actual printed circuit board. Tradeoffs between accuracy and noise immunity are presented. The results show that the wavelet technique can produce first derivative approximations that are accurate to within 5% or better, even under noisy conditions. The wavelet technique can be used to calculate the derivative of a digital signal edge when conventional methods fail.

Keywords: digital signals, electronics, IBIS model, printedcircuit board, wavelets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
3507 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition

Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil

Abstract:

The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.

Keywords: NDT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
3506 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature

Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak

Abstract:

In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.

Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
3505 Mathematical Analysis of EEG of Patients with Non-fatal Nonspecific Diffuse Encephalitis

Authors: Mukesh Doble, Sunil K Narayan

Abstract:

Diffuse viral encephalitis may lack fever and other cardinal signs of infection and hence its distinction from other acute encephalopathic illnesses is challenging. Often, the EEG changes seen routinely are nonspecific and reflect diffuse encephalopathic changes only. The aim of this study was to use nonlinear dynamic mathematical techniques for analyzing the EEG data in order to look for any characteristic diagnostic patterns in diffuse forms of encephalitis.It was diagnosed on clinical, imaging and cerebrospinal fluid criteria in three young male patients. Metabolic and toxic encephalopathies were ruled out through appropriate investigations. Digital EEGs were done on the 3rd to 5th day of onset. The digital EEGs of 5 male and 5 female age and sex matched healthy volunteers served as controls.Two sample t-test indicated that there was no statistically significant difference between the average values in amplitude between the two groups. However, the standard deviation (or variance) of the EEG signals at FP1-F7 and FP2-F8 are significantly higher for the patients than the normal subjects. The regularisation dimension is significantly less for the patients (average between 1.24-1.43) when compared to the normal persons (average between 1.41-1.63) for the EEG signals from all locations except for the Fz-Cz signal. Similarly the wavelet dimension is significantly less (P = 0.05*) for the patients (1.122) when compared to the normal person (1.458). EEGs are subdued in the case of the patients with presence of uniform patterns, manifested in the values of regularisation and wavelet dimensions, when compared to the normal person, indicating a decrease in chaotic nature.

Keywords: Chaos, Diffuse encephalitis, Electroencephalogram, Fractal dimension, Fourier spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
3504 A Method for Iris Recognition Based on 1D Coiflet Wavelet

Authors: Agus Harjoko, Sri Hartati, Henry Dwiyasa

Abstract:

There have been numerous implementations of security system using biometric, especially for identification and verification cases. An example of pattern used in biometric is the iris pattern in human eye. The iris pattern is considered unique for each person. The use of iris pattern poses problems in encoding the human iris. In this research, an efficient iris recognition method is proposed. In the proposed method the iris segmentation is based on the observation that the pupil has lower intensity than the iris, and the iris has lower intensity than the sclera. By detecting the boundary between the pupil and the iris and the boundary between the iris and the sclera, the iris area can be separated from pupil and sclera. A step is taken to reduce the effect of eyelashes and specular reflection of pupil. Then the four levels Coiflet wavelet transform is applied to the extracted iris image. The modified Hamming distance is employed to measure the similarity between two irises. This research yields the identification success rate of 84.25% for the CASIA version 1.0 database. The method gives an accuracy of 77.78% for the left eyes of MMU 1 database and 86.67% for the right eyes. The time required for the encoding process, from the segmentation until the iris code is generated, is 0.7096 seconds. These results show that the accuracy and speed of the method is better than many other methods.

Keywords: Biometric, iris recognition, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
3503 A Copyright Protection Scheme for Color Images using Secret Sharing and Wavelet Transform

Authors: Shang-Lin Hsieh, Lung-Yao Hsu, I-Ju Tsai

Abstract:

This paper proposes a copyright protection scheme for color images using secret sharing and wavelet transform. The scheme contains two phases: the share image generation phase and the watermark retrieval phase. In the generation phase, the proposed scheme first converts the image into the YCbCr color space and creates a special sampling plane from the color space. Next, the scheme extracts the features from the sampling plane using the discrete wavelet transform. Then, the scheme employs the features and the watermark to generate a principal share image. In the retrieval phase, an expanded watermark is first reconstructed using the features of the suspect image and the principal share image. Next, the scheme reduces the additional noise to obtain the recovered watermark, which is then verified against the original watermark to examine the copyright. The experimental results show that the proposed scheme can resist several attacks such as JPEG compression, blurring, sharpening, noise addition, and cropping. The accuracy rates are all higher than 97%.

Keywords: Color image, copyright protection, discrete wavelet transform, secret sharing, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
3502 On the Prediction of Transmembrane Helical Segments in Membrane Proteins Based on Wavelet Transform

Authors: Yu Bin, Zhang Yan

Abstract:

The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a new method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. To access the effect of the method, 80 proteins with known 3D-structure from Mptopo database are chosen at random as the test objects (including 325 TMHs), 308 of which can be predicted accurately, the average predicted accuracy is 96.3%. In addition, the above 80 membrane proteins are divided into 13 groups according to their function and type. In particular, the results of the prediction of TMHs of the 13 groups are satisfying.

Keywords: discrete wavelet transform, hydrophobicity, membrane protein, transmembrane helical segments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
3501 Fault Zone Detection on Advanced Series Compensated Transmission Line using Discrete Wavelet Transform and SVM

Authors: Renju Gangadharan, G. N. Pillai, Indra Gupta

Abstract:

In this paper a novel method for finding the fault zone on a Thyristor Controlled Series Capacitor (TCSC) incorporated transmission line is presented. The method makes use of the Support Vector Machine (SVM), used in the classification mode to distinguish between the zones, before or after the TCSC. The use of Discrete Wavelet Transform is made to prepare the features which would be given as the input to the SVM. This method was tested on a 400 kV, 50 Hz, 300 Km transmission line and the results were highly accurate.

Keywords: Flexible ac transmission system (FACTS), thyristorcontrolled series-capacitor (TCSC), discrete wavelet transforms(DWT), support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
3500 Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks

Authors: L. Salhi, M. Talbi, A. Cherif

Abstract:

This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standard values thanks to a programmable database. Sounds are collected from normal people and patients, and then classified into two different categories. Speech data base is consists of several pathological and normal voices collected from the national hospital “Rabta-Tunis". Speech processing algorithm is conducted in a supervised mode for discrimination of normal and pathology voices and then for classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.

Keywords: Formants, Neural Networks, Pathological Voices, Pitch, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850
3499 The Wavelet-Based DFT: A New Interpretation, Extensions and Applications

Authors: Abdulnasir Hossen, Ulrich Heute

Abstract:

In 1990 [1] the subband-DFT (SB-DFT) technique was proposed. This technique used the Hadamard filters in the decomposition step to split the input sequence into low- and highpass sequences. In the next step, either two DFTs are needed on both bands to compute the full-band DFT or one DFT on one of the two bands to compute an approximate DFT. A combination network with correction factors was to be applied after the DFTs. Another approach was proposed in 1997 [2] for using a special discrete wavelet transform (DWT) to compute the discrete Fourier transform (DFT). In the first step of the algorithm, the input sequence is decomposed in a similar manner to the SB-DFT into two sequences using wavelet decomposition with Haar filters. The second step is to perform DFTs on both bands to obtain the full-band DFT or to obtain a fast approximate DFT by implementing pruning at both input and output sides. In this paper, the wavelet-based DFT (W-DFT) with Haar filters is interpreted as SB-DFT with Hadamard filters. The only difference is in a constant factor in the combination network. This result is very important to complete the analysis of the W-DFT, since all the results concerning the accuracy and approximation errors in the SB-DFT are applicable. An application example in spectral analysis is given for both SB-DFT and W-DFT (with different filters). The adaptive capability of the SB-DFT is included in the W-DFT algorithm to select the band of most energy as the band to be computed. Finally, the W-DFT is extended to the two-dimensional case. An application in image transformation is given using two different types of wavelet filters.

Keywords: Image Transform, Spectral Analysis, Sub-Band DFT, Wavelet DFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
3498 Efficient Method for ECG Compression Using Two Dimensional Multiwavelet Transform

Authors: Morteza Moazami-Goudarzi, Mohammad H. Moradi, Ali Taheri

Abstract:

In this paper we introduce an effective ECG compression algorithm based on two dimensional multiwavelet transform. Multiwavelets offer simultaneous orthogonality, symmetry and short support, which is not possible with scalar two-channel wavelet systems. These features are known to be important in signal processing. Thus multiwavelet offers the possibility of superior performance for image processing applications. The SPIHT algorithm has achieved notable success in still image coding. We suggested applying SPIHT algorithm to 2-D multiwavelet transform of2-D arranged ECG signals. Experiments on selected records of ECG from MIT-BIH arrhythmia database revealed that the proposed algorithm is significantly more efficient in comparison with previously proposed ECG compression schemes.

Keywords: ECG signal compression, multi-rateprocessing, 2-D Multiwavelet, Prefiltering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
3497 Discrimination of Seismic Signals Using Artificial Neural Networks

Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim

Abstract:

The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
3496 Undecimated Wavelet Transform Based Contrast Enhancement

Authors: Numan Unaldi, Samil Temel, Süleyman Demirci

Abstract:

A novel undecimated wavelet transform based contrast enhancement algorithmis proposed to for both gray scale andcolor images. Contrast enhancement is realized by tuning the magnitude of approximation coefficients at each level with respect to the approximation coefficients of one higher level during the inverse transform phase in a center/surround  enhancement sense.The performance of the proposed algorithm is evaluated using a statistical visual contrast measure (VCM). Experimental results on the proposed algorithm show improvement in terms of the VCM.

Keywords: Image enhancement, local contrast enhancement, visual contrast measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2753
3495 Edge Detection Algorithm Based on Wavelet De-nosing Applied tothe X-ray Image Enhancement of the Electric Equipment

Authors: Fei Xue, Hong Yu, Da-da Wang, Wei Zhang, Rong-min Zou, Xiao-lanCai

Abstract:

The X-ray technology has been used in non-destructive evaluation in the Power System, in which a visual non-destructive inspection method for the electrical equipment is provided. However, lots of noise is existed in the images that are got from the X-ray digital images equipment. Therefore, the auto defect detection which based on these images will be very difficult to proceed. A theory on X-ray image de-noising algorithm based on wavelet transform is proposed in this paper. Then the edge detection algorithm is used so that the defect can be pushed out. The result of experiment shows that the method which utilized by this paper is very useful for de-noising on the X-ray images.

Keywords: de-noising, edge detection, wavelet transform, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
3494 Multi-Focus Image Fusion Using SFM and Wavelet Packet

Authors: Somkait Udomhunsakul

Abstract:

In this paper, a multi-focus image fusion method using Spatial Frequency Measurements (SFM) and Wavelet Packet was proposed. The proposed fusion approach, firstly, the two fused images were transformed and decomposed into sixteen subbands using Wavelet packet. Next, each subband was partitioned into sub-blocks and each block was identified the clearer regions by using the Spatial Frequency Measurement (SFM). Finally, the recovered fused image was reconstructed by performing the Inverse Wavelet Transform. From the experimental results, it was found that the proposed method outperformed the traditional SFM based methods in terms of objective and subjective assessments.

Keywords: Multi-focus image fusion, Wavelet Packet, Spatial Frequency Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
3493 High Performance VLSI Architecture of 2D Discrete Wavelet Transform with Scalable Lattice Structure

Authors: Juyoung Kim, Taegeun Park

Abstract:

In this paper, we propose a fully-utilized, block-based 2D DWT (discrete wavelet transform) architecture, which consists of four 1D DWT filters with two-channel QMF lattice structure. The proposed architecture requires about 2MN-3N registers to save the intermediate results for higher level decomposition, where M and N stand for the filter length and the row width of the image respectively. Furthermore, the proposed 2D DWT processes in horizontal and vertical directions simultaneously without an idle period, so that it computes the DWT for an N×N image in a period of N2(1-2-2J)/3. Compared to the existing approaches, the proposed architecture shows 100% of hardware utilization and high throughput rates. To mitigate the long critical path delay due to the cascaded lattices, we can apply the pipeline technique with four stages, while retaining 100% of hardware utilization. The proposed architecture can be applied in real-time video signal processing.

Keywords: discrete wavelet transform, VLSI architecture, QMF lattice filter, pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
3492 RBF Based Face Recognition and Expression Analysis

Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar

Abstract:

Facial recognition and expression analysis is rapidly becoming an area of intense interest in computer science and humancomputer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper skin and non-skin pixels were separated. Face regions were extracted from the detected skin regions. Facial expressions are analyzed from facial images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to identify the person and to classify the facial expressions. Our method reliably works even with faces, which carry heavy expressions.

Keywords: Face Recognition, Radial Basis Function, Gabor Wavelet Transform, Discrete Cosine Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
3491 Implementation of Neural Network Based Electricity Load Forecasting

Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw

Abstract:

This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.

Keywords: Neural network, Load forecast, Time series, wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504