Search results for: Association rule mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1150

Search results for: Association rule mining

1060 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)

Authors: Kamal K.Bharadwaj, Rekha Kandwal

Abstract:

An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. In this paper, a set of related HPRs is called a cluster and is represented by a HPR-tree. This paper discusses an algorithm based on cumulative learning scenario for dynamic structuring of clusters. The proposed scheme incrementally incorporates new knowledge into the set of clusters from the previous episodes and also maintains summary of clusters as Synopsis to be used in the future episodes. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested incremental structuring of clusters would be useful in mining data streams.

Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
1059 Weka Based Desktop Data Mining as Web Service

Authors: Sujala.D.Shetty, S.Vadivel, Sakshi Vaghella

Abstract:

Data mining is the process of sifting through large volumes of data, analyzing data from different perspectives and summarizing it into useful information. One of the widely used desktop applications for data mining is the Weka tool which is nothing but a collection of machine learning algorithms implemented in Java and open sourced under the General Public License (GPL). A web service is a software system designed to support interoperable machine to machine interaction over a network using SOAP messages. Unlike a desktop application, a web service is easy to upgrade, deliver and access and does not occupy any memory on the system. Keeping in mind the advantages of a web service over a desktop application, in this paper we are demonstrating how this Java based desktop data mining application can be implemented as a web service to support data mining across the internet.

Keywords: desktop application, Weka mining, web service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4080
1058 Chaotic Behavior in Monetary Systems: Comparison among Different Types of Taylor Rule

Authors: Reza Moosavi Mohseni, Wenjun Zhang, Jiling Cao

Abstract:

The aim of the present study is to detect the chaotic behavior in monetary economic relevant dynamical system. The study employs three different forms of Taylor rules: current, forward, and backward looking. The result suggests the existence of the chaotic behavior in all three systems. In addition, the results strongly represent that using expectations in policy rule especially rational expectation hypothesis can increase complexity of the system and leads to more chaotic behavior.

Keywords: Chaos theory, GMM estimator, Lyapunov Exponent, Monetary System, Taylor Rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
1057 ATM Service Analysis Using Predictive Data Mining

Authors: S. Madhavi, S. Abirami, C. Bharathi, B. Ekambaram, T. Krishna Sankar, A. Nattudurai, N. Vijayarangan

Abstract:

The high utilization rate of Automated Teller Machine (ATM) has inevitably caused the phenomena of waiting for a long time in the queue. This in turn has increased the out of stock situations. The ATM utilization helps to determine the usage level and states the necessity of the ATM based on the utilization of the ATM system. The time in which the ATM used more frequently (peak time) and based on the predicted solution the necessary actions are taken by the bank management. The analysis can be done by using the concept of Data Mining and the major part are analyzed based on the predictive data mining. The results are predicted from the historical data (past data) and track the relevant solution which is required. Weka tool is used for the analysis of data based on predictive data mining.

Keywords: ATM, Bank Management, Data Mining, Historical data, Predictive Data Mining, Weka tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5613
1056 Moving Data Mining Tools toward a Business Intelligence System

Authors: Nittaya Kerdprasop, Kittisak Kerdprasop

Abstract:

Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.

Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1055 AudioMine: Medical Data Mining in Heterogeneous Audiology Records

Authors: Shaun Cox, Michael Oakes, Stefan Wermter, Maurice Hawthorne

Abstract:

We report on the results of a pilot study in which a data-mining tool was developed for mining audiology records. The records were heterogeneous in that they contained numeric, category and textual data. The tools developed are designed to observe associations between any field in the records and any other field. The techniques employed were the statistical chi-squared test, and the use of self-organizing maps, an unsupervised neural learning approach.

Keywords: Audiology, data mining, chi-squared, self-organizing maps

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
1054 Association of Smoking with Chest Radiographic and Lung Function Findings in Retired Bauxite Mining Workers

Authors: L. R. Ferreira, R. C. G. Bianchi, L. C.R. Ferreira, C. M. Galhardi, E. P. Baciuk, L. H. Oliveira

Abstract:

Inhalation hazards are associated with potentially injurious exposure and increased risk for lung diseases, within the bauxite mining industry, especially for the smelter workers. Smoking is related to decreased lung function and leads to chronic lung diseases. This study had the objective to evaluate whether smoking is related to functional and radiographic respiratory changes in retired bauxite mining workers. Methods: This was a retrospective and cross-sectional study involving the analysis of database information of 140 retired bauxite mining workers from Poços de Caldas-MG evaluated at Worker’s Health Reference Center and at the Social Security Brazilian National Institute, from July 1st, 2015 until June 30th, 2016. The workers were divided into three groups: non-smokers (n = 47), ex-smokers (n = 46), and smokers (n = 47). The data included: age, gender, spirometry results, and the presence or not of pulmonary pleural and/or parenchymal changes in chest radiographs. Chi-Squared test was used (p < 0,05). Results: In the smokers’ group, 83% of spirometry tests and 64% of chest x-rays were altered. In the non-smokers’ group, 19% of spirometry tests and 13% of chest x-rays were altered. In the ex-smokers’ group, 35% of spirometry tests and 30% of chest x-rays were altered. Most of the results were statistically significant. Results demonstrated a significant difference between smokers’ and non-smokers’ groups in regard to spirometric and radiographic pulmonary alterations. Ex-smokers’ and non-smokers’ group demonstrated better results when compared to the smokers’ group in relation to altered spirometry and radiograph findings. These data may contribute to planning strategies to enhance smoking cessation programs within the bauxite mining industry.

Keywords: Bauxite mining, spirometry, chest radiography, smoking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
1053 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: Instance selection, data reduction, MapReduce, kNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
1052 Rule-Based Expert System for Headache Diagnosis and Medication Recommendation

Authors: Noura Al-Ajmi, Mohammed A. Almulla

Abstract:

With the increased utilization of technology devices around the world, healthcare and medical diagnosis are critical issues that people worry about these days. Doctors are doing their best to avoid any medical errors while diagnosing diseases and prescribing the wrong medication. Subsequently, artificial intelligence applications that can be installed on mobile devices such as rule-based expert systems facilitate the task of assisting doctors in several ways. Due to their many advantages, the usage of expert systems has increased recently in health sciences. This work presents a backward rule-based expert system that can be used for a headache diagnosis and medication recommendation system. The structure of the system consists of three main modules, namely the input unit, the processing unit, and the output unit.

Keywords: Headache diagnosis system, treatment recommender system, rule-based expert system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745
1051 W3-Miner: Mining Weighted Frequent Subtree Patterns in a Collection of Trees

Authors: R. AliMohammadzadeh, M. Haghir Chehreghani, A. Zarnani, M. Rahgozar

Abstract:

Mining frequent tree patterns have many useful applications in XML mining, bioinformatics, network routing, etc. Most of the frequent subtree mining algorithms (i.e. FREQT, TreeMiner and CMTreeMiner) use anti-monotone property in the phase of candidate subtree generation. However, none of these algorithms have verified the correctness of this property in tree structured data. In this research it is shown that anti-monotonicity does not generally hold, when using weighed support in tree pattern discovery. As a result, tree mining algorithms that are based on this property would probably miss some of the valid frequent subtree patterns in a collection of trees. In this paper, we investigate the correctness of anti-monotone property for the problem of weighted frequent subtree mining. In addition we propose W3-Miner, a new algorithm for full extraction of frequent subtrees. The experimental results confirm that W3-Miner finds some frequent subtrees that the previously proposed algorithms are not able to discover.

Keywords: Semi-Structured Data Mining, Anti-Monotone Property, Trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
1050 A Comparative Study of Page Ranking Algorithms for Information Retrieval

Authors: Ashutosh Kumar Singh, Ravi Kumar P

Abstract:

This paper gives an introduction to Web mining, then describes Web Structure mining in detail, and explores the data structure used by the Web. This paper also explores different Page Rank algorithms and compare those algorithms used for Information Retrieval. In Web Mining, the basics of Web mining and the Web mining categories are explained. Different Page Rank based algorithms like PageRank (PR), WPR (Weighted PageRank), HITS (Hyperlink-Induced Topic Search), DistanceRank and DirichletRank algorithms are discussed and compared. PageRanks are calculated for PageRank and Weighted PageRank algorithms for a given hyperlink structure. Simulation Program is developed for PageRank algorithm because PageRank is the only ranking algorithm implemented in the search engine (Google). The outputs are shown in a table and chart format.

Keywords: Web Mining, Web Structure, Web Graph, LinkAnalysis, PageRank, Weighted PageRank, HITS, DistanceRank, DirichletRank,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
1049 Video Mining for Creative Rendering

Authors: Mei Chen

Abstract:

More and more home videos are being generated with the ever growing popularity of digital cameras and camcorders. For many home videos, a photo rendering, whether capturing a moment or a scene within the video, provides a complementary representation to the video. In this paper, a video motion mining framework for creative rendering is presented. The user-s capture intent is derived by analyzing video motions, and respective metadata is generated for each capture type. The metadata can be used in a number of applications, such as creating video thumbnail, generating panorama posters, and producing slideshows of video.

Keywords: Motion mining, semantic abstraction, video mining, video representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1048 The Role of the Injured Party's Fault in the Apportionment of Damages in Tort Law: A Comparative-Historical Study between Common Law and Islamic Law

Authors: Alireza Tavakolinia

Abstract:

In order to understand the role of the injured party's fault in dividing liability, we studied its historical background. In common law, the traditional contributory negligence rule was a complete defense. Then the legislature and judicial procedure modified that rule to one of apportionment. In Islamic law, too, the Action rule was at first used when the injured party was the sole cause, but jurists expanded the scope of this rule, so this rule was used in cases where both the injured party's fault and that of the other party are involved. There are some popular approaches for apportionment of damages. Some common law countries like Britain had chosen ‘the causal potency approach’ and ‘fixed apportionment’. Islamic countries like Iran have chosen both ‘the relative blameworthiness’ and ‘equal apportionment’ approaches. The article concludes that both common law and Islamic law believe in the division of responsibility between a wrongdoer claimant and the defendant. In contrast, in the apportionment of responsibility, Islamic law mostly believes in equal apportionment that is way easier and saves time and money, but common law legal systems have chosen the causal potency approach which is more complicated than the rival approach but is fairer.

Keywords: Contributory negligence, common law, Islamic Law, Tort Law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857
1047 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.

Keywords: Politics, machine learning, feature selection, LIWC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
1046 Application of Neural Networks in Financial Data Mining

Authors: Defu Zhang, Qingshan Jiang, Xin Li

Abstract:

This paper deals with the application of a well-known neural network technique, multilayer back-propagation (BP) neural network, in financial data mining. A modified neural network forecasting model is presented, and an intelligent mining system is developed. The system can forecast the buying and selling signs according to the prediction of future trends to stock market, and provide decision-making for stock investors. The simulation result of seven years to Shanghai Composite Index shows that the return achieved by this mining system is about three times as large as that achieved by the buy and hold strategy, so it is advantageous to apply neural networks to forecast financial time series, the different investors could benefit from it.

Keywords: Data mining, neural network, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589
1045 Navigation Patterns Mining Approach based on Expectation Maximization Algorithm

Authors: Norwati Mustapha, Manijeh Jalali, Abolghasem Bozorgniya, Mehrdad Jalali

Abstract:

Web usage mining algorithms have been widely utilized for modeling user web navigation behavior. In this study we advance a model for mining of user-s navigation pattern. The model makes user model based on expectation-maximization (EM) algorithm.An EM algorithm is used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables. The experimental results represent that by decreasing the number of clusters, the log likelihood converges toward lower values and probability of the largest cluster will be decreased while the number of the clusters increases in each treatment.

Keywords: Web Usage Mining, Expectation maximization, navigation pattern mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
1044 Prospects, Problems of Marketing Research and Data Mining in Turkey

Authors: Sema Kurtuluş, Kemal Kurtuluş

Abstract:

The objective of this paper is to review and assess the methodological issues and problems in marketing research, data and knowledge mining in Turkey. As a summary, academic marketing research publications in Turkey have significant problems. The most vital problem seems to be related with modeling. Most of the publications had major weaknesses in modeling. There were also, serious problems regarding measurement and scaling, sampling and analyses. Analyses myopia seems to be the most important problem for young academia in Turkey. Another very important finding is the lack of publications on data and knowledge mining in the academic world.

Keywords: Marketing research, data mining, knowledge mining, research modeling, analyses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1043 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: Data mining, textile production, decision trees, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
1042 Effect of Adaptation Gain on system Performance for Model Reference Adaptive Control Scheme using MIT Rule

Authors: Pankaj Swarnkar, Shailendra Jain, R.K Nema

Abstract:

Adaptive control involves modifying the control law used by the controller to cope with the fact that the parameters of the system being controlled change drastically due to change in environmental conditions or in system itself. This technique is based on the fundamental characteristic of adaptation of living organism. The adaptive control process is one that continuously and automatically measures the dynamic behavior of plant, compares it with the desired output and uses the difference to vary adjustable system parameters or to generate an actuating signal in such a way so that optimal performance can be maintained regardless of system changes. This paper deals with application of model reference adaptive control scheme in first order system. The rule which is used for this application is MIT rule. This paper also shows the effect of adaptation gain on the system performance. Simulation is done in MATLAB and results are discussed in detail.

Keywords: Adaptive control system, Adaptation gain, MIT rule, Model reference adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
1041 Web Log Mining by an Improved AprioriAll Algorithm

Authors: Wang Tong, He Pi-lian

Abstract:

This paper sets forth the possibility and importance about applying Data Mining in Web logs mining and shows some problems in the conventional searching engines. Then it offers an improved algorithm based on the original AprioriAll algorithm which has been used in Web logs mining widely. The new algorithm adds the property of the User ID during the every step of producing the candidate set and every step of scanning the database by which to decide whether an item in the candidate set should be put into the large set which will be used to produce next candidate set. At the meantime, in order to reduce the number of the database scanning, the new algorithm, by using the property of the Apriori algorithm, limits the size of the candidate set in time whenever it is produced. Test results show the improved algorithm has a more lower complexity of time and space, better restrain noise and fit the capacity of memory.

Keywords: Candidate Sets Pruning, Data Mining, ImprovedAlgorithm, Noise Restrain, Web Log

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
1040 Opinion Mining and Sentiment Analysis on DEFT

Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala

Abstract:

Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.

Keywords: Opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
1039 Performance Evaluation of Prioritized Limited Processor-Sharing System

Authors: Yoshiaki Shikata, Wataru Katagiri, Yoshitaka Takahashi

Abstract:

We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N  3 priority classes.

Keywords: PS rule, priority ratio, service-facility capacity, simulation algorithm, sojourn time, performance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
1038 Proposing an Efficient Method for Frequent Pattern Mining

Authors: Vaibhav Kant Singh, Vijay Shah, Yogendra Kumar Jain, Anupam Shukla, A.S. Thoke, Vinay KumarSingh, Chhaya Dule, Vivek Parganiha

Abstract:

Data mining, which is the exploration of knowledge from the large set of data, generated as a result of the various data processing activities. Frequent Pattern Mining is a very important task in data mining. The previous approaches applied to generate frequent set generally adopt candidate generation and pruning techniques for the satisfaction of the desired objective. This paper shows how the different approaches achieve the objective of frequent mining along with the complexities required to perform the job. This paper will also look for hardware approach of cache coherence to improve efficiency of the above process. The process of data mining is helpful in generation of support systems that can help in Management, Bioinformatics, Biotechnology, Medical Science, Statistics, Mathematics, Banking, Networking and other Computer related applications. This paper proposes the use of both upward and downward closure property for the extraction of frequent item sets which reduces the total number of scans required for the generation of Candidate Sets.

Keywords: Data Mining, Candidate Sets, Frequent Item set, Pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1037 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease

Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan

Abstract:

In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.

Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
1036 Discovery of Quantified Hierarchical Production Rules from Large Set of Discovered Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Automated discovery of Rule is, due to its applicability, one of the most fundamental and important method in KDD. It has been an active research area in the recent past. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form: Decision If < condition> Generality Specificity . HPRs systems are capable of handling taxonomical structures inherent in the knowledge about the real world. This paper focuses on the issue of mining Quantified rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses Quantified production rules as initial individuals of GP and discovers hierarchical structure. In proposed approach rules are quantified by using Dempster Shafer theory. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Quantified Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy, using Dempster Shafer theory. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Knowledge discovery in database, quantification, dempster shafer theory, genetic programming, hierarchy, subsumption matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
1035 Bubble Point Pressures of CO2+Ethyl Palmitate by a Cubic Equation of State and the Wong-Sandler Mixing Rule

Authors: M. A. Sedghamiz, S. Raeissi

Abstract:

This study presents three different approaches to estimate bubble point pressures for the binary system of CO2 and ethyl palmitate fatty acid ethyl ester. The first method involves the Peng-Robinson (PR) Equation of State (EoS) with the conventional mixing rule of Van der Waals. The second approach involves the PR EOS together with the Wong Sandler (WS) mixing rule, coupled with the UNIQUAC GE model. In order to model the bubble point pressures with this approach, the volume and area parameter for ethyl palmitate were estimated by the Hansen group contribution method. The last method involved the Peng-Robinson, combined with the Wong-Sandler method, but using NRTL as the GE model. Results using the Van der Waals mixing rule clearly indicated that this method has the largest errors among all three methods, with errors in the range of 3.96-6.22%. The PR-WS-UNIQUAC method exhibited small errors, with average absolute deviations between 0.95 to 1.97 percent. The PR-WS-NRTL method led to the least errors, where average absolute deviations ranged between 0.65-1.7%.

Keywords: Bubble pressure, Gibbs excess energy model, mixing rule, CO2 solubility, ethyl palmitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1034 Discovering User Behaviour Patterns from Web Log Analysis to Enhance the Accessibility and Usability of Website

Authors: Harpreet Singh

Abstract:

Finding relevant information on the World Wide Web is becoming highly challenging day by day. Web usage mining is used for the extraction of relevant and useful knowledge, such as user behaviour patterns, from web access log records. Web access log records all the requests for individual files that the users have requested from the website. Web usage mining is important for Customer Relationship Management (CRM), as it can ensure customer satisfaction as far as the interaction between the customer and the organization is concerned. Web usage mining is helpful in improving website structure or design as per the user’s requirement by analyzing the access log file of a website through a log analyzer tool. The focus of this paper is to enhance the accessibility and usability of a guitar selling web site by analyzing their access log through Deep Log Analyzer tool. The results show that the maximum number of users is from the United States and that they use Opera 9.8 web browser and the Windows XP operating system.

Keywords: Web usage mining, log file, web mining, data mining, deep log analyser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
1033 PmSPARQL: Extended SPARQL for Multi-paradigm Path Extraction

Authors: Thabet Slimani, Boutheina Ben Yaghlane, Khaled Mellouli

Abstract:

In the last few years, the Semantic Web gained scientific acceptance as a means of relationships identification in knowledge base, widely known by semantic association. Query about complex relationships between entities is a strong requirement for many applications in analytical domains. In bioinformatics for example, it is critical to extract exchanges between proteins. Currently, the widely known result of such queries is to provide paths between connected entities from data graph. However, they do not always give good results while facing the user need by the best association or a set of limited best association, because they only consider all existing paths but ignore the path evaluation. In this paper, we present an approach for supporting association discovery queries. Our proposal includes (i) a query language PmSPRQL which provides a multiparadigm query expressions for association extraction and (ii) some quantification measures making easy the process of association ranking. The originality of our proposal is demonstrated by a performance evaluation of our approach on real world datasets.

Keywords: Association extraction, query Language, relationships, knowledge base, multi-paradigm query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
1032 The Data Mining usage in Production System Management

Authors: Pavel Vazan, Pavol Tanuska, Michal Kebisek

Abstract:

The paper gives the pilot results of the project that is oriented on the use of data mining techniques and knowledge discoveries from production systems through them. They have been used in the management of these systems. The simulation models of manufacturing systems have been developed to obtain the necessary data about production. The authors have developed the way of storing data obtained from the simulation models in the data warehouse. Data mining model has been created by using specific methods and selected techniques for defined problems of production system management. The new knowledge has been applied to production management system. Gained knowledge has been tested on simulation models of the production system. An important benefit of the project has been proposal of the new methodology. This methodology is focused on data mining from the databases that store operational data about the production process.

Keywords: data mining, data warehousing, management of production system, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3475
1031 MATLAB-Based Graphical User Interface (GUI) for Data Mining as a Tool for Environment Management

Authors: M. Awawdeh, A. Fedi

Abstract:

The application of data mining to environmental monitoring has become crucial for a number of tasks related to emergency management. Over recent years, many tools have been developed for decision support system (DSS) for emergency management. In this article a graphical user interface (GUI) for environmental monitoring system is presented. This interface allows accomplishing (i) data collection and observation and (ii) extraction for data mining. This tool may be the basis for future development along the line of the open source software paradigm.

Keywords: Data Mining, Environmental data, Mathematical Models, Matlab Graphical User Interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4741