Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31108
Opinion Mining and Sentiment Analysis on DEFT

Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala

Abstract:

Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.

Keywords: Annotation, Opinion mining, sentiment analysis, emotion, Figurative Language, Twitter, polarity, OSEE, DEFT, Tweet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119

References:


[1] B.Azzeddine, A. Harbaoui, and BEN Ghezala H, “Sentiment Analysis Approaches based on Granularity Levels”, 2018.
[2] H. Ali, et al. "Détection d'opinion: Apprenons les bons adjectifs!." INFORSID'08: INFormatique des Organisations et Systèmes d'Information et de Décision-Atelier FODOP'08. 2008.‏
[3] Benamara, F., Grouin, C., Karoui, J., Moriceau, V., & Robba, I. (2017). Analyse d'opinion et langage figuratif dans des tweets: présentation et résultats du Défi Fouille de Textes DEFT2017.
[4] Graceffa, D., Ramond, A., Dusserre, E., Kalitvianski, R., Ruhlmann, M., & Padró, M. (2018). Notre tweet première fois au DEFT-2018: systèmes de détection de polarité et de transports (Systems for detecting polarity and public transport discussions in French tweets). In Actes de la Conférence TALN. Volume 2-Démonstrations, articles des Rencontres Jeunes Chercheurs, ateliers DeFT (pp. 287-298).
[5] Belbachir, F. (2010). Expérimentation de fonctions pour la détection d’opinions dans les blogs. IRIT. Université Toulouse, 3, 95.
[6] Fraisse A. & Paroubek P. et al. (2014). Guide d’annotations d’opinions/sentiments/émotions pour le projet uComp, 2014.
[7] Hamon, T., Fraisse, A., Paroubek, P., Zweigenbaum, P., & Grouin, C. (2015, June). Analyse des émotions, sentiments et opinions exprimés dans les tweets: présentation et résultats de l'édition 2015 du défi fouille de texte (DEFT).
[8] Paroubek, P., Grouin, C., Bellot, P., Claveau, V., Eshkol-Taravella, I., Fraisse, A., ... & Torres-Moreno, J. M. (2018, May). DEFT2018: recherche d'information et analyse de sentiments dans des tweets concernant les transports en Île de France.
[9] Martineau, C., Voyatzi, S., Varga, L., Brizard, S., & Migeotte, A. (2011, October). Détection fine d'opinion et sentiments: attribution fine de la polarité et calcul incrémental de l'intensité.
[10] Minard, A. L., Raymond, C., & Claveau, V. (2018, May). Participation de l’IRISA à DeFT 2018: classification et annotation d’opinion dans des tweets.
[11] Ghosh A., LI G., Veale T., Rosso P., Shutova E., Barnden J. & REYES A. (2015). Semeval-2015 task 11 : Sentiment analysis of figurative language in twitter. In Proc of SemEval, p.470–478, Denver, CO.
[12] Basile V., Bolioli A., Nissim M., Patti V. & Rosso P. (2014). Overview of the Evalita 2014 SENTIment POLarity Classification Task. In Proc of EVALITA, p. 50–57, Pisa, Italy : Pisa University Press.
[13] Barbieri F., Basile V., Croce D., Nissim M., Novielli N. & Patti V. (2016). Overview of the Evalita 2016 SENTIment POLarity Classification Task. In Proc of Third Italian Conference on Computational Linguistics (CLiC-it 2016) and Fifth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian, Napoli, Italia : CEUR Workshop Proceedings.