Search results for: Data mining classification algorithms
7957 Spread Spectrum Image Watermarking for Secured Multimedia Data Communication
Authors: Tirtha S. Das, Ayan K. Sau, Subir K. Sarkar
Abstract:
Digital watermarking is a way to provide the facility of secure multimedia data communication besides its copyright protection approach. The Spread Spectrum modulation principle is widely used in digital watermarking to satisfy the robustness of multimedia signals against various signal-processing operations. Several SS watermarking algorithms have been proposed for multimedia signals but very few works have discussed on the issues responsible for secure data communication and its robustness improvement. The current paper has critically analyzed few such factors namely properties of spreading codes, proper signal decomposition suitable for data embedding, security provided by the key, successive bit cancellation method applied at decoder which have greater impact on the detection reliability, secure communication of significant signal under camouflage of insignificant signals etc. Based on the analysis, robust SS watermarking scheme for secure data communication is proposed in wavelet domain and improvement in secure communication and robustness performance is reported through experimental results. The reported result also shows improvement in visual and statistical invisibility of the hidden data.
Keywords: Spread spectrum modulation, spreading code, signaldecomposition, security, successive bit cancellation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27817956 Object Localization in Medical Images Using Genetic Algorithms
Authors: George Karkavitsas, Maria Rangoussi
Abstract:
We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.
Keywords: Genetic algorithms, object registration, pattern recognition, blood cell microscope images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19697955 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.
Keywords: Autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10147954 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks
Authors: Si-Gwan Kim
Abstract:
Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.Keywords: Clustering, multi-path, routing protocol, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24717953 Texture Feature Extraction using Slant-Hadamard Transform
Authors: M. J. Nassiri, A. Vafaei, A. Monadjemi
Abstract:
Random and natural textures classification is still one of the biggest challenges in the field of image processing and pattern recognition. In this paper, texture feature extraction using Slant Hadamard Transform was studied and compared to other signal processing-based texture classification schemes. A parametric SHT was also introduced and employed for natural textures feature extraction. We showed that a subtly modified parametric SHT can outperform ordinary Walsh-Hadamard transform and discrete cosine transform. Experiments were carried out on a subset of Vistex random natural texture images using a kNN classifier.Keywords: Texture Analysis, Slant Transform, Hadamard, DCT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26737952 Extraction of Symbolic Rules from Artificial Neural Networks
Authors: S. M. Kamruzzaman, Md. Monirul Islam
Abstract:
Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16167951 CAD/CAM Algorithms for 3D Woven Multilayer Textile Structures
Authors: Martin A. Smith, Xiaogang Chen
Abstract:
This paper proposes new algorithms for the computeraided design and manufacture (CAD/CAM) of 3D woven multi-layer textile structures. Existing commercial CAD/CAM systems are often restricted to the design and manufacture of 2D weaves. Those CAD/CAM systems that do support the design and manufacture of 3D multi-layer weaves are often limited to manual editing of design paper grids on the computer display and weave retrieval from stored archives. This complex design activity is time-consuming, tedious and error-prone and requires considerable experience and skill of a technical weaver. Recent research reported in the literature has addressed some of the shortcomings of commercial 3D multi-layer weave CAD/CAM systems. However, earlier research results have shown the need for further work on weave specification, weave generation, yarn path editing and layer binding. Analysis of 3D multi-layer weaves in this research has led to the design and development of efficient and robust algorithms for the CAD/CAM of 3D woven multi-layer textile structures. The resulting algorithmically generated weave designs can be used as a basis for lifting plans that can be loaded onto looms equipped with electronic shedding mechanisms for the CAM of 3D woven multi-layer textile structures.Keywords: CAD/CAM, Multi-layer, Textile, Weave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25717950 Body Mass Index for Australian Athletes Participating in Rugby Union, Soccer and Touch Football at the World Masters Games
Authors: Walsh Joe, Climstein Mike, Heazlewood Ian Timothy, Burke Stephen, Kettunen Jyrki, Adams Kent, DeBeliso Mark
Abstract:
Whilst there is growing evidence that activity across the lifespan is beneficial for improved health, there are also many changes involved with the aging process and subsequently the potential for reduced indices of health. Data gathered on a subsample of 535 football code athletes, aged 31-72 yrs ( = 47.4, s = ±7.1), competing at the Sydney World Masters Games (2009) demonstrated a significantly (p < 0.001), reduced classification of obesity using Body Mass Index (BMI) when compared to the general Australian population. This evidence of improved classification in one index of health (BMI < 30) for master athletes (when compared to the general population) implies there are either improved levels of this index of health due to adherence to sport or possibly the reduced BMI is advantageous and contributes to this cohort adhering (or being attracted) to masters sport. Demonstration of this proportionately under-investigated World Masters Games population having improved health over the general population is of particular interest.
Keywords: BMI, masters athlete, rugby union, soccer, touch football.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21967949 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso
Abstract:
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.
Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16147948 Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia
Authors: A. Ali, V. Strezov, P. Davies, I. Wright, T. Kan
Abstract:
The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn).Keywords: Coal mine, environmental impact, produced water, sediment quality guidelines value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14037947 Optimization of Unweighted Minimum Vertex Cover
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Minimum Vertex Cover (MVC) problem is a classic graph optimization NP - complete problem. In this paper a competent algorithm, called Vertex Support Algorithm (VSA), is designed to find the smallest vertex cover of a graph. The VSA is tested on a large number of random graphs and DIMACS benchmark graphs. Comparative study of this algorithm with the other existing methods has been carried out. Extensive simulation results show that the VSA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.Keywords: vertex cover, vertex support, approximation algorithms, NP - complete problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24907946 Singularity Loci of Actuation Schemes for 3RRR Planar Parallel Manipulator
Authors: S. Ramana Babu, V. Ramachandra Raju, K. Ramji
Abstract:
This paper presents the effect of actuation schemes on the performance of parallel manipulators and also how the singularity loci have been changed in the reachable workspace of the manipulator with the choice of actuation scheme to drive the manipulator. The performance of the eight possible actuation schemes of 3RRR planar parallel manipulator is compared with each other. The optimal design problem is formulated to find the manipulator geometry that maximizes the singularity free conditioned workspace for all the eight actuation cases, the optimization problem is solved by using genetic algorithms.Keywords: Actuation schemes, GCI, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16277945 Using Multi-Thread Technology Realize Most Short-Path Parallel Algorithm
Authors: Chang-le Lu, Yong Chen
Abstract:
The shortest path question is in a graph theory model question, and it is applied in many fields. The most short-path question may divide into two kinds: Single sources most short-path, all apexes to most short-path. This article mainly introduces the problem of all apexes to most short-path, and gives a new parallel algorithm of all apexes to most short-path according to the Dijkstra algorithm. At last this paper realizes the parallel algorithms in the technology of C # multithreading.Keywords: Dijkstra algorithm, parallel algorithms, multi-thread technology, most short-path, ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21127944 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea
Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das
Abstract:
This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.Keywords: Arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6687943 Early-Warning Lights Classification Management System for Industrial Parks in Taiwan
Authors: Yu-Min Chang, Kuo-Sheng Tsai, Hung-Te Tsai, Chia-Hsin Li
Abstract:
This paper presents the early-warning lights classification management system for industrial parks promoted by the Taiwan Environmental Protection Administration (EPA) since 2011, including the definition of each early-warning light, objectives, action program and accomplishments. All of the 151 industrial parks in Taiwan were classified into four early-warning lights, including red, orange, yellow and green, for carrying out respective pollution management according to the monitoring data of soil and groundwater quality, regulatory compliance, and regulatory listing of control site or remediation site. The Taiwan EPA set up a priority list for high potential polluted industrial parks and investigated their soil and groundwater qualities based on the results of the light classification and pollution potential assessment. In 2011-2013, there were 44 industrial parks selected and carried out different investigation, such as the early warning groundwater well networks establishment and pollution investigation/verification for the red and orange-light industrial parks and the environmental background survey for the yellow-light industrial parks. Among them, 22 industrial parks were newly or continuously confirmed that the concentrations of pollutants exceeded those in soil or groundwater pollution control standards. Thus, the further investigation, groundwater use restriction, listing of pollution control site or remediation site, and pollutant isolation measures were implemented by the local environmental protection and industry competent authorities; the early warning lights of those industrial parks were proposed to adjust up to orange or red-light. Up to the present, the preliminary positive effect of the soil and groundwater quality management system for industrial parks has been noticed in several aspects, such as environmental background information collection, early warning of pollution risk, pollution investigation and control, information integration and application, and inter-agency collaboration. Finally, the work and goal of self-initiated quality management of industrial parks will be carried out on the basis of the inter-agency collaboration by the classified lights system of early warning and management as well as the regular announcement of the status of each industrial park.
Keywords: Industrial park, soil and groundwater quality management, early-warning lights classification, SOP for reporting and treatment of monitored abnormal events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19917942 A New Approach of Fuzzy Methods for Evaluating of Hydrological Data
Authors: Nasser Shamskia, Seyyed Habib Rahmati, Hassan Haleh , Seyyedeh Hoda Rahmati
Abstract:
The main criteria of designing in the most hydraulic constructions essentially are based on runoff or discharge of water. Two of those important criteria are runoff and return period. Mostly, these measures are calculated or estimated by stochastic data. Another feature in hydrological data is their impreciseness. Therefore, in order to deal with uncertainty and impreciseness, based on Buckley-s estimation method, a new fuzzy method of evaluating hydrological measures are developed. The method introduces triangular shape fuzzy numbers for different measures in which both of the uncertainty and impreciseness concepts are considered. Besides, since another important consideration in most of the hydrological studies is comparison of a measure during different months or years, a new fuzzy method which is consistent with special form of proposed fuzzy numbers, is also developed. Finally, to illustrate the methods more explicitly, the two algorithms are tested on one simple example and a real case study.Keywords: Fuzzy Discharge, Fuzzy estimation, Fuzzy ranking method, Hydrological data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17137941 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems
Authors: Nyeng P. Gyang
Abstract:
Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.Keywords: Cloud computing systems, multicore systems, parallel delaunay triangulation, parallel surface modeling and generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8797940 Low Complexity Peak-to-Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System by Simultaneously Applying Partial Transmit Sequence and Clipping Algorithms
Authors: V. Sudha, D. Sriram Kumar
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) has been used in many advanced wireless communication systems due to its high spectral efficiency and robustness to frequency selective fading channels. However, the major concern with OFDM system is the high peak-to-average power ratio (PAPR) of the transmitted signal. Some of the popular techniques used for PAPR reduction in OFDM system are conventional partial transmit sequences (CPTS) and clipping. In this paper, a parallel combination/hybrid scheme of PAPR reduction using clipping and CPTS algorithms is proposed. The proposed method intelligently applies both the algorithms in order to reduce both PAPR as well as computational complexity. The proposed scheme slightly degrades bit error rate (BER) performance due to clipping operation and it can be reduced by selecting an appropriate value of the clipping ratio (CR). The simulation results show that the proposed algorithm achieves significant PAPR reduction with much reduced computational complexity.
Keywords: CCDF, OFDM, PAPR, PTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13697939 Approximating Fixed Points by a Two-Step Iterative Algorithm
Authors: Safeer Hussain Khan
Abstract:
In this paper, we introduce a two-step iterative algorithm to prove a strong convergence result for approximating common fixed points of three contractive-like operators. Our algorithm basically generalizes an existing algorithm..Our iterative algorithm also contains two famous iterative algorithms: Mann iterative algorithm and Ishikawa iterative algorithm. Thus our result generalizes the corresponding results proved for the above three iterative algorithms to a class of more general operators. At the end, we remark that nothing prevents us to extend our result to the case of the iterative algorithm with error terms.
Keywords: Contractive-like operator, iterative algorithm, fixed point, strong convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20227938 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner
Authors: Guy Leshem, Ya'acov Ritov
Abstract:
Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39117937 Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).
Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17167936 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, DragoĊ GavriluĊ£, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32817935 Evolutionary Query Optimization for Heterogeneous Distributed Database Systems
Authors: Reza Ghaemi, Amin Milani Fard, Hamid Tabatabaee, Mahdi Sadeghizadeh
Abstract:
Due to new distributed database applications such as huge deductive database systems, the search complexity is constantly increasing and we need better algorithms to speedup traditional relational database queries. An optimal dynamic programming method for such high dimensional queries has the big disadvantage of its exponential order and thus we are interested in semi-optimal but faster approaches. In this work we present a multi-agent based mechanism to meet this demand and also compare the result with some commonly used query optimization algorithms.Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34257934 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.
Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4967933 Two-Phase Optimization for Selecting Materialized Views in a Data Warehouse
Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul
Abstract:
A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance. Therefore, in this paper, we introduce a new approach aimed to solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that 2PO outperform the original algorithms in terms of query processing cost and view maintenance cost.Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17057932 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45247931 Human Action Recognition System Based on Silhouette
Authors: S. Maheswari, P. Arockia Jansi Rani
Abstract:
Human action is recognized directly from the video sequences. The objective of this work is to recognize various human actions like run, jump, walk etc. Human action recognition requires some prior knowledge about actions namely, the motion estimation, foreground and background estimation. Region of interest (ROI) is extracted to identify the human in the frame. Then, optical flow technique is used to extract the motion vectors. Using the extracted features similarity measure based classification is done to recognize the action. From experimentations upon the Weizmann database, it is found that the proposed method offers a high accuracy.Keywords: Background subtraction, human silhouette, optical flow, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10007930 IT Systems of the US Federal Courts, Justice, and Governance
Authors: Joseph Zernik
Abstract:
Validity, integrity, and impacts of the IT systems of the US federal courts have been studied as part of the Human Rights Alert-NGO (HRA) submission for the 2015 Universal Periodic Review (UPR) of human rights in the United States by the Human Rights Council (HRC) of the United Nations (UN). The current report includes overview of IT system analysis, data-mining and case studies. System analysis and data-mining show: Development and implementation with no lawful authority, servers of unverified identity, invalidity in implementation of electronic signatures, authentication instruments and procedures, authorities and permissions; discrimination in access against the public and unrepresented (pro se) parties and in favor of attorneys; widespread publication of invalid judicial records and dockets, leading to their false representation and false enforcement. A series of case studies documents the impacts on individuals' human rights, on banking regulation, and on international matters. Significance is discussed in the context of various media and expert reports, which opine unprecedented corruption of the US justice system today, and which question, whether the US Constitution was in fact suspended. Similar findings were previously reported in IT systems of the State of California and the State of Israel, which were incorporated, subject to professional HRC staff review, into the UN UPR reports (2010 and 2013). Solutions are proposed, based on the principles of publicity of the law and the separation of power: Reliance on US IT and legal experts under accountability to the legislative branch, enhancing transparency, ongoing vigilance by human rights and internet activists. IT experts should assume more prominent civic duties in the safeguard of civil society in our era.
Keywords: E-justice, federal courts, United States, human rights, banking regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21497929 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: Hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7707928 Efficient HAAR Wavelet Transform with Embedded Zerotrees of Wavelet Compression for Color Images
Authors: S. Piramu Kailasam
Abstract:
This study is expected to compress true color image with compression algorithms in color spaces to provide high compression rates. The need of high compression ratio is to improve storage space. Alternative aim is to rank compression algorithms in a suitable color space. The dataset is sequence of true color images with size 128 x 128. HAAR Wavelet is one of the famous wavelet transforms, has great potential and maintains image quality of color images. HAAR wavelet Transform using Set Partitioning in Hierarchical Trees (SPIHT) algorithm with different color spaces framework is applied to compress sequence of images with angles. Embedded Zerotrees of Wavelet (EZW) is a powerful standard method to sequence data. Hence the proposed compression frame work of HAAR wavelet, xyz color space, morphological gradient and applied image with EZW compression, obtained improvement to other methods, in terms of Compression Ratio, Mean Square Error, Peak Signal Noise Ratio and Bits Per Pixel quality measures.
Keywords: Color Spaces, HAAR Wavelet, Morphological Gradient, Embedded Zerotrees Wavelet Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518