Search results for: probabilistic neural network
2174 WDM-Based Storage Area Network (SAN) for Disaster Recovery Operations
Authors: Sandeep P. Abhang, Girish V. Chowdhay
Abstract:
This paper proposes a Wavelength Division Multiplexing (WDM) technology based Storage Area Network (SAN) for all type of Disaster recovery operation. It considers recovery when all paths failure in the network as well as the main SAN site failure also the all backup sites failure by the effect of natural disasters such as earthquakes, fires and floods, power outage, and terrorist attacks, as initially SAN were designed to work within distance limited environments[2]. Paper also presents a NEW PATH algorithm when path failure occurs. The simulation result and analysis is presented for the proposed architecture with performance consideration.Keywords: SAN, WDM, FC, Ring, IP, network load, iSCSI, miles, disaster.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19572173 A Model for Business Network Governance: Case Study in the Pharmaceutical Industry
Authors: Emil Crişan, Matthias Klumpp
Abstract:
This paper discusses the theory behind the existence of an idealistic model for business network governance and uses a clarifying case-study, containing governance structures and processes within a business network framework. The case study from a German pharmaceutical industry company complements existing literature by providing a comprehensive explanation of the relations between supply chains and business networks, and also between supply chain management and business network governance. Supply chains and supply chain management are only one side of the interorganizational relationships and ensure short-term performance, while real-world governance structures are needed for ensuring the long-term existence of a supply chain. Within this context, a comprehensive model for business governance is presented. An interesting finding from the case study is that multiple business network governance systems co-exist within the evaluated supply chain.
Keywords: Business network, pharmaceutical industry, supply chain governance, supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23732172 A Parameter-Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks
Authors: Felix Dobslaw
Abstract:
In this paper, a framework for the simplification and standardization of metaheuristic related parameter-tuning by applying a four phase methodology, utilizing Design of Experiments and Artificial Neural Networks, is presented. Metaheuristics are multipurpose problem solvers that are utilized on computational optimization problems for which no efficient problem specific algorithm exist. Their successful application to concrete problems requires the finding of a good initial parameter setting, which is a tedious and time consuming task. Recent research reveals the lack of approach when it comes to this so called parameter-tuning process. In the majority of publications, researchers do have a weak motivation for their respective choices, if any. Because initial parameter settings have a significant impact on the solutions quality, this course of action could lead to suboptimal experimental results, and thereby a fraudulent basis for the drawing of conclusions.Keywords: Parameter-Tuning, Metaheuristics, Design of Experiments, Artificial Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17902171 Performance Analysis of Round Trip Delay Time in Practical Wireless Network for Telemanagement
Authors: El Miloud Ar Reyouchi, Kamal Ghoumid, Koutaiba Ameziane, Otman El Mrabet, Slimane Mekaoui
Abstract:
In this paper we focus on the Round Trip Delay (RTD) time measurement technique which is an easy way to obtain the operating condition information in wireless network (WN). RTD measurement is affected by various parameters of wireless network. We illustrate how these RTD parameters vary (in a telemanagement application) versus distance, baud rates, number of hops, between nodes, using radio modem & router unit as a means of transmission and wireless routing.
Keywords: Wireless Network, Round Trip Delay, Radio modem, Router.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38942170 Hopfield Network as Associative Memory with Multiple Reference Points
Authors: Domingo López-Rodríguez, Enrique Mérida-Casermeiro, Juan M. Ortiz-de-Lazcano-Lobato
Abstract:
Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.
Keywords: Associative memory, Hopfield network, network capacity, spurious patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11122169 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.
Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4162168 Probability and Instruction Effects in Syllogistic Conditional Reasoning
Authors: Olimpia Matarazzo, Ivana Baldassarre
Abstract:
The main aim of this study was to examine whether people understand indicative conditionals on the basis of syntactic factors or on the basis of subjective conditional probability. The second aim was to investigate whether the conditional probability of q given p depends on the antecedent and consequent sizes or derives from inductive processes leading to establish a link of plausible cooccurrence between events semantically or experientially associated. These competing hypotheses have been tested through a 3 x 2 x 2 x 2 mixed design involving the manipulation of four variables: type of instructions (“Consider the following statement to be true", “Read the following statement" and condition with no conditional statement); antecedent size (high/low); consequent size (high/low); statement probability (high/low). The first variable was between-subjects, the others were within-subjects. The inferences investigated were Modus Ponens and Modus Tollens. Ninety undergraduates of the Second University of Naples, without any prior knowledge of logic or conditional reasoning, participated in this study. Results suggest that people understand conditionals in a syntactic way rather than in a probabilistic way, even though the perception of the conditional probability of q given p is at least partially involved in the conditionals- comprehension. They also showed that, in presence of a conditional syllogism, inferences are not affected by the antecedent or consequent sizes. From a theoretical point of view these findings suggest that it would be inappropriate to abandon the idea that conditionals are naturally understood in a syntactic way for the idea that they are understood in a probabilistic way.Keywords: Conditionals, conditional probability, conditional syllogism, inferential task.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15732167 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.
Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6462166 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear types of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: Dynamic algorithm, Load imbalance, Mapping, Task scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20302165 Mixtures of Monotone Networks for Prediction
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12542164 Improving Multi-storey Building Sensor Network with an External Hub
Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis
Abstract:
Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.Keywords: Wireless sensor networks, radio propagation, building monitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15572163 Self Organizing Analysis Platform for Wear Particle
Authors: Qurban A. Memon, Mohammad S. Laghari
Abstract:
Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear particle analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear particle. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.Keywords: Neural Network, Relationship Measurement, Selforganizing Clusters, Wear Particle Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22192162 Dynamic Interaction Network to Model the Interactive Patterns of International Stock Markets
Authors: Laura Lukmanto, Harya Widiputra, Lukas
Abstract:
Studies in economics domain tried to reveal the correlation between stock markets. Since the globalization era, interdependence between stock markets becomes more obvious. The Dynamic Interaction Network (DIN) algorithm, which was inspired by a Gene Regulatory Network (GRN) extraction method in the bioinformatics field, is applied to reveal important and complex dynamic relationship between stock markets. We use the data of the stock market indices from eight countries around the world in this study. Our results conclude that DIN is able to reveal and model patterns of dynamic interaction from the observed variables (i.e. stock market indices). Furthermore, it is also found that the extracted network models can be utilized to predict movement of the stock market indices with a considerably good accuracy.
Keywords: complex dynamic relationship, dynamic interaction network, interactive stock markets, stock market interdependence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14092161 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.
Keywords: Iot, activity recognition, automatic classification, unconstrained environment, deep neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11402160 Parallel Hybrid Honeypot and IDS Architecture to Detect Network Attacks
Authors: Hafiz Gulfam Ahmad, Chuangdong Li, Zeeshan Ahmad
Abstract:
In this paper, we have proposed a parallel IDS and honeypot based approach to detect and analyze the unknown and known attack taxonomy for improving the IDS performance and protecting the network from intruders. The main theme of our approach is to record and analyze the intruder activities by using both the low and high interaction honeypots. Our architecture aims to achieve the required goals by combing signature based IDS, honeypots and generate the new signatures. The paper describes the basic component, design and implementation of this approach and also demonstrates the effectiveness of this approach to reduce the probability of network attacks.
Keywords: Network security, Intrusion detection, Honeypot, Snort, Nmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25342159 Effects of Network Dynamics on Routing Efficiency in P2P Networks
Authors: Mojca Ciglaric, Andrej Krevl, Matjaž Pancur, Tone Vidmar
Abstract:
P2P Networks are highly dynamic structures since their nodes – peer users keep joining and leaving continuously. In the paper, we study the effects of network change rates on query routing efficiency. First we describe some background and an abstract system model. The chosen routing technique makes use of cached metadata from previous answer messages and also employs a mechanism for broken path detection and metadata maintenance. Several metrics are used to show that the protocol behaves quite well even with high rate of node departures, but above a certain threshold it literally breaks down and exhibits considerable efficiency degradation.Keywords: Network dynamics, overlay network, P2P system, routing efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13682158 The Framework for Adaptive Games for Mobile Application Using Neural Networks
Authors: Widodo Budiharto, Michael Yoseph Ricky, Ro'fah Nur Rachmawati
Abstract:
The rapid development of the BlackBerry games industry and its development goals were not just for entertainment, but also used for educational of students interactively. Unfortunately the development of adaptive educational games on BlackBerry in Indonesian language that interesting and entertaining for learning process is very limited. This paper shows the research of development of novel adaptive educational games for students who can adjust the difficulty level of games based on the ability of the user, so that it can motivate students to continue to play these games. We propose a method where these games can adjust the level of difficulty, based on the assessment of the results of previous problems using neural networks with three inputs in the form of percentage correct, the speed of answer and interest mode of games (animation / lessons) and 1 output. The experimental results are presented and show the adaptive games are running well on mobile devices based on BlackBerry platform
Keywords: Adaptive games, neural networks, mobile games, BlackBerry
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18492157 Neuro-Fuzzy System for Equalization Channel Distortion
Authors: Rahib H. Abiyev
Abstract:
In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.
Keywords: Neuro-fuzzy system, noise equalization, neuro-fuzzy equalizer, neural system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16352156 Social Movements and the Diffusion of Tactics and Repertoires: Activists' Network in Anti-globalism Movement
Authors: Kyoko Tominaga
Abstract:
Non-Government Organizations (NGOs), Non-Profit Organizations (NPOs), Social Enterprises and other actors play an important role in political decisions in governments at the international levels. Especially, such organizations’ and activists’ network in civil society is quite important to effect to the global politics. To solve the complex social problems in global era, diverse actors should corporate each other. Moreover, network of protesters is also contributes to diffuse tactics, information and other resources of social movements.Based on the findings from the study of International Trade Fairs (ITFs), the author analyzes the network of activists in anti-globalism movement. This research focuses the transition of 54 activists’ whole network in the “protest event” against 2008 G8 summit in Japan. Their network is examined at the three periods: Before protest event phase, during protest event phase and after event phase. A mixed method is used in this study: the author shows the hypothesis from social network analysis and evaluates that with interview data analysis. This analysis gives the two results. Firstly, the more protesters participate to the various events during the protest event, the more they build the network. After that, active protesters keep their network as well. From interview data, we can understand that the active protesters can build their network and diffuse the information because they communicate with other participants and understand that diverse issues are related. This paper comes to same conclusion with previous researches: protest events activate the network among the political activists. However, some participants succeed to build their network, others do not. “Networked” activists are participated in the various events for short period of time and encourage the diffusion of information and tactics of social movements.
Keywords: Social Movement, Global Justice Movement, Tactics, Diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22122155 Network Coding-based ARQ scheme with Overlapping Selection for Resource Limited Multicast/Broadcast Services
Authors: Jung-Hyun Kim, Jihyung Kim, Kwangjae Lim, Dong Seung Kwon
Abstract:
Network coding has recently attracted attention as an efficient technique in multicast/broadcast services. The problem of finding the optimal network coding mechanism maximizing the bandwidth efficiency is hard to solve and hard to approximate. Lots of network coding-based schemes have been suggested in the literature to improve the bandwidth efficiency, especially network coding-based automatic repeat request (NCARQ) schemes. However, existing schemes have several limitations which cause the performance degradation in resource limited systems. To improve the performance in resource limited systems, we propose NCARQ with overlapping selection (OS-NCARQ) scheme. The advantages of OS-NCARQ scheme over the traditional ARQ scheme and existing NCARQ schemes are shown through the analysis and simulations.
Keywords: ARQ, Network coding, Multicast/Broadcast services, Packet-based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15182154 A Multiclass BCMP Queueing Modeling and Simulation-Based Road Traffic Flow Analysis
Authors: Jouhra Dad, Mohammed Ouali, Yahia Lebbah
Abstract:
Urban road network traffic has become one of the most studied research topics in the last decades. This is mainly due to the enlargement of the cities and the growing number of motor vehicles traveling in this road network. One of the most sensitive problems is to verify if the network is congestion-free. Another related problem is the automatic reconfiguration of the network without building new roads to alleviate congestions. These problems require an accurate model of the traffic to determine the steady state of the system. An alternative is to simulate the traffic to see if there are congestions and when and where they occur. One key issue is to find an adequate model for road intersections. Once the model established, either a large scale model is built or the intersection is represented by its performance measures and simulation for analysis. In both cases, it is important to seek the queueing model to represent the road intersection. In this paper, we propose to model the road intersection as a BCMP queueing network and we compare this analytical model against a simulation model for validation.Keywords: Queueing theory, transportation systems, BCMPqueueing network, performance measures, modeling, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24472153 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: Deep-learning, image classification, image identification, industrial engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7762152 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.
Keywords: Transportation network, critical path, connectivity reliability, network model, Neo4J application, optimal path, critical path, edge betweenness centrality index, node betweenness centrality index, Yen’s k-shortest paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8742151 Distributed Load Flow Analysis using Graph Theory
Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy
Abstract:
In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.Keywords: Radial Distribution network, Graph, Load-flow, Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31502150 Interbank Networks and the Benefits of Using Multilayer Structures
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Complexity science seeks the understanding of systems adopting diverse theories from various areas. Network analysis has been gaining space and credibility, namely with the biological, social and economic systems. Significant part of the literature focuses only monolayer representations of connections among agents considering one level of their relationships, and excludes other levels of interactions, leading to simplistic results in network analysis. Therefore, this work aims to demonstrate the advantages of the use of multilayer networks for the representation and analysis of networks. For this, we analyzed an interbank network, composed of 42 banks, comparing the centrality measures of the agents (degree and PageRank) resulting from each method (monolayer x multilayer). This proved to be the most reliable and efficient the multilayer analysis for the study of the current networks and highlighted JP Morgan and Deutsche Bank as the most important banks of the analyzed network.
Keywords: Complexity, interbank networks, multilayer networks, network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8632149 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System
Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek
Abstract:
Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.Keywords: Mesh network, RFID, wireless sensor network, zigbee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26532148 Locating Center Points for Radial Basis Function Networks Using Instance Reduction Techniques
Authors: Rana Yousef, Khalil el Hindi
Abstract:
The behavior of Radial Basis Function (RBF) Networks greatly depends on how the center points of the basis functions are selected. In this work we investigate the use of instance reduction techniques, originally developed to reduce the storage requirements of instance based learners, for this purpose. Five Instance-Based Reduction Techniques were used to determine the set of center points, and RBF networks were trained using these sets of centers. The performance of the RBF networks is studied in terms of classification accuracy and training time. The results obtained were compared with two Radial Basis Function Networks: RBF networks that use all instances of the training set as center points (RBF-ALL) and Probabilistic Neural Networks (PNN). The former achieves high classification accuracies and the latter requires smaller training time. Results showed that RBF networks trained using sets of centers located by noise-filtering techniques (ALLKNN and ENN) rather than pure reduction techniques produce the best results in terms of classification accuracy. The results show that these networks require smaller training time than that of RBF-ALL and higher classification accuracy than that of PNN. Thus, using ALLKNN and ENN to select center points gives better combination of classification accuracy and training time. Our experiments also show that using the reduced sets to train the networks is beneficial especially in the presence of noise in the original training sets.
Keywords: Radial basis function networks, Instance-based reduction, PNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16942147 Seismic Alert System based on Artificial Neural Networks
Authors: C. M. A. Robles G., R. A. Hernandez-Becerril
Abstract:
We board the problem of creating a seismic alert system, based upon artificial neural networks, trained by using the well-known back-propagation and genetic algorithms, in order to emit the alarm for the population located into a specific city, about an eminent earthquake greater than 4.5 Richter degrees, and avoiding disasters and human loses. In lieu of using the propagation wave, we employed the magnitude of the earthquake, to establish a correlation between the recorded magnitudes from a controlled area and the city, where we want to emit the alarm. To measure the accuracy of the posed method, we use a database provided by CIRES, which contains the records of 2500 quakes incoming from the State of Guerrero and Mexico City. Particularly, we performed the proposed method to generate an issue warning in Mexico City, employing the magnitudes recorded in the State of Guerrero.Keywords: Seismic Alert System, Artificial Neural Networks, Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17302146 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32392145 Performance Evaluation of Energy Efficient Communication Protocol for Mobile Ad Hoc Networks
Authors: Toshihiko Sasama, Kentaro Kishida, Kazunori Sugahara, Hiroshi Masuyama
Abstract:
A mobile ad hoc network is a network of mobile nodes without any notion of centralized administration. In such a network, each mobile node behaves not only as a host which runs applications but also as a router to forward packets on behalf of others. Clustering has been applied to routing protocols to achieve efficient communications. A CH network expresses the connected relationship among cluster-heads. This paper discusses the methods for constructing a CH network, and produces the following results: (1) The required running costs of 3 traditional methods for constructing a CH network are not so different from each other in the static circumstance, or in the dynamic circumstance. Their running costs in the static circumstance do not differ from their costs in the dynamic circumstance. Meanwhile, although the routing costs required for the above 3 methods are not so different in the static circumstance, the costs are considerably different from each other in the dynamic circumstance. Their routing costs in the static circumstance are also very different from their costs in the dynamic circumstance, and the former is one tenths of the latter. The routing cost in the dynamic circumstance is mostly the cost for re-routing. (2) On the strength of the above results, we discuss new 2 methods regarding whether they are tolerable or not in the dynamic circumstance, that is, whether the times of re-routing are small or not. These new methods are revised methods that are based on the traditional methods. We recommended the method which produces the smallest routing cost in the dynamic circumstance, therefore producing the smallest total cost.Keywords: cluster, mobile ad hoc network, re-routing cost, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358