Search results for: intermittent networks.
835 How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective
Authors: Malte Brettel, Niklas Friederichsen, Michael Keller, Marius Rosenberg
Abstract:
The German manufacturing industry has to withstand an increasing global competition on product quality and production costs. As labor costs are high, several industries have suffered severely under the relocation of production facilities towards aspiring countries, which have managed to close the productivity and quality gap substantially. Established manufacturing companies have recognized that customers are not willing to pay large price premiums for incremental quality improvements. As a consequence, many companies from the German manufacturing industry adjust their production focusing on customized products and fast time to market. Leveraging the advantages of novel production strategies such as Agile Manufacturing and Mass Customization, manufacturing companies transform into integrated networks, in which companies unite their core competencies. Hereby, virtualization of the process- and supply-chain ensures smooth inter-company operations providing real-time access to relevant product and production information for all participating entities. Boundaries of companies deteriorate, as autonomous systems exchange data, gained by embedded systems throughout the entire value chain. By including Cyber-Physical-Systems, advanced communication between machines is tantamount to their dialogue with humans. The increasing utilization of information and communication technology allows digital engineering of products and production processes alike. Modular simulation and modeling techniques allow decentralized units to flexibly alter products and thereby enable rapid product innovation. The present article describes the developments of Industry 4.0 within the literature and reviews the associated research streams. Hereby, we analyze eight scientific journals with regards to the following research fields: Individualized production, end-to-end engineering in a virtual process chain and production networks. We employ cluster analysis to assign sub-topics into the respective research field. To assess the practical implications, we conducted face-to-face interviews with managers from the industry as well as from the consulting business using a structured interview guideline. The results reveal reasons for the adaption and refusal of Industry 4.0 practices from a managerial point of view. Our findings contribute to the upcoming research stream of Industry 4.0 and support decision-makers to assess their need for transformation towards Industry 4.0 practices.
Keywords: Industry 4.0., Mass Customization, Production networks, Virtual Process-Chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31789834 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks
Authors: Gunasekaran Raja, Ramkumar Jayaraman
Abstract:
In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.
Keywords: Cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438833 A Refined Application of QFD in SCM, A New Approach
Authors: Nooshin La'l Mohamadi
Abstract:
Due to the fact that in the new century customers tend to express globally increasing demands, networks of interconnected businesses have been established in societies and the management of such networks seems to be a major key through gaining competitive advantages. Supply chain management encompasses such managerial activities. Within a supply chain, a critical role is played by quality. QFD is a widely-utilized tool which serves the purpose of not only bringing quality to the ultimate provision of products or service packages required by the end customer or the retailer, but it can also initiate us into a satisfactory relationship with our initial customer; that is the wholesaler. However, the wholesalers- cooperation is considerably based on the capabilities that are heavily dependent on their locations and existing circumstances. Therefore, it is undeniable that for all companies each wholesaler possesses a specific importance ratio which can heavily influence the figures calculated in the House of Quality in QFD. Moreover, due to the competitiveness of the marketplace today, it-s been widely recognized that consumers- expression of demands has been highly volatile in periods of production. Apparently, such instability and proneness to change has been very tangibly noticed and taking it into account during the analysis of HOQ is widely influential and doubtlessly required. For a more reliable outcome in such matters, this article demonstrates the application viability of Analytic Network Process for considering the wholesalers- reputation and simultaneously introduces a mortality coefficient for the reliability and stability of the consumers- expressed demands in course of time. Following to this, the paper provides further elaboration on the relevant contributory factors and approaches through the calculation of such coefficients. In the end, the article concludes that an empirical application is needed to achieve broader validity.Keywords: Analytic Network Process, Quality Function Deployment, QFD flaws, Supply Chain Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432832 RRNS-Convolutional Concatenated Code for OFDM based Wireless Communication with Direct Analog-to-Residue Converter
Authors: Shahana T. K., Babita R. Jose, K. Poulose Jacob, Sreela Sasi
Abstract:
The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. Here, a direct conversion of analog signal to residue domain is done to reduce the conversion complexity using sigma-delta based parallel analog-to-residue converter. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.Keywords: Analog-to-residue converter, Concatenated codes, OFDM, Redundant Residue Number System, Sigma-delta modulator, Wireless communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948831 Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks
Authors: Mohanchur Sakar, K.K.Shukla, K.S.Dasgupta
Abstract:
This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.Keywords: GEO, ns2, Proactive TCP, SACK, Vegas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432830 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.
Keywords: dyscalculia, neurodevelopment, evoked potentials, learning disabilities, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605829 Survey of Communication Technologies for IoT Deployments in Developing Regions
Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen
Abstract:
The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.
Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 404828 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process
Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast
Abstract:
Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579827 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.
Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604826 The Challenges of Cloud Computing Adoption in Nigeria
Authors: Chapman Eze Nnadozie
Abstract:
Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.
Keywords: Cloud computing, data centre, infrastructure, IT resources, network, servers, virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801825 An Analysis of Blackouts for Electric Power Transmission Systems
Authors: Karamitsos Ioannis, Orfanidis Konstantinos
Abstract:
In this paper an analysis of blackouts in electric power transmission systems is implemented using a model and studied in simple networks with a regular topology. The proposed model describes load demand and network improvements evolving on a slow timescale as well as the fast dynamics of cascading overloads and outages.Keywords: Blackout, Generator, Load, Power Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475824 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modeling and Solving
Authors: Yasin Tadayonrad, Alassane Ballé Ndiaye
Abstract:
Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading/unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is the loading/unloading capacity in each source/destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods (FMCG) industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on Python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.
Keywords: Supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539823 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling
Authors: M. Almutairi, S. Hadjiloucas
Abstract:
The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.
Keywords: Harmonics, passive filter, power factor, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193822 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers
Authors: Alexandre Boum, Salomon Madinatou
Abstract:
This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.
Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713821 The Comparison of Data Replication in Distributed Systems
Authors: Iman Zangeneh, Mostafa Moradi, Ali Mokhtarbaf
Abstract:
The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.Keywords: data replication, data hiding, consistency, dynamicdata replication strategy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639820 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data
Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan
Abstract:
The conditional density characterizes the distribution of a response variable y given other predictor x, and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts a motivating starting point. In this work, we extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zP , zN]. The zP component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zN component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach, coined Augmented Posterior CDE (AP-CDE), only requires a simple modification on the common normalizing flow framework, while significantly improving the interpretation of the latent component, since zP represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of x-related variations due to factors such as lighting condition and subject id, from the other random variations. Further, the experiments show that an unconditional NF neural network, based on an unsupervised model of z, such as Gaussian mixture, fails to generate interpretable results.
Keywords: Conditional density estimation, image generation, normalizing flow, supervised dimension reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178819 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals
Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou
Abstract:
In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.Keywords: Continuous wavelet transform, convolution neural network, gated recurrent unit, health indicators, remaining useful life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774818 Software Architecture and Support for Patient Tracking Systems in Critical Scenarios
Authors: Gianluca Cornetta, Abdellah Touhafi, David J. Santos, Jose Manuel Vazquez
Abstract:
In this work a new platform for mobile-health systems is presented. System target application is providing decision support to rescue corps or military medical personnel in combat areas. Software architecture relies on a distributed client-server system that manages a wireless ad-hoc networks hierarchy in which several different types of client operate. Each client is characterized for different hardware and software requirements. Lower hierarchy levels rely in a network of completely custom devices that store clinical information and patient status and are designed to form an ad-hoc network operating in the 2.4 GHz ISM band and complying with the IEEE 802.15.4 standard (ZigBee). Medical personnel may interact with such devices, that are called MICs (Medical Information Carriers), by means of a PDA (Personal Digital Assistant) or a MDA (Medical Digital Assistant), and transmit the information stored in their local databases as well as issue a service request to the upper hierarchy levels by using IEEE 802.11 a/b/g standard (WiFi). The server acts as a repository that stores both medical evacuation forms and associated events (e.g., a teleconsulting request). All the actors participating in the diagnostic or evacuation process may access asynchronously to such repository and update its content or generate new events. The designed system pretends to optimise and improve information spreading and flow among all the system components with the aim of improving both diagnostic quality and evacuation process.Keywords: IEEE 802.15.4 (ZigBee), IEEE 802.11 a/b/g (WiFi), distributed client-server systems, embedded databases, issue trackers, ad-hoc networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044817 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks
Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha
Abstract:
This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.
Keywords: 5G, millimetre wavebands, super high-frequency band, SINR, signal-to-interference-plus-noise ratio, cost benefit analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726816 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans
Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke
Abstract:
Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.
Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675815 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance
Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian
Abstract:
Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR power plants commercially generate steam directly and indirectly in order to produce electricity with high technical efficiency and lower its costs. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the DSG of the LFR. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.
Keywords: Concentrated Solar Power, Levelized cost of electricity, Linear Fresnel reflectors, Steam generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200814 Surface Water Flow of Urban Areas and Sustainable Urban Planning
Authors: Sheetal Sharma
Abstract:
Urban planning is associated with land transformation from natural areas to modified and developed ones which leads to modification of natural environment. The basic knowledge of relationship between both should be ascertained before proceeding for the development of natural areas. Changes on land surface due to build up pavements, roads and similar land cover, affect surface water flow. There is a gap between urban planning and basic knowledge of hydrological processes which should be known to the planners. The paper aims to identify these variations in surface flow due to urbanization for a temporal scale of 40 years using Storm Water Management Mode (SWMM) and again correlating these findings with the urban planning guidelines in study area along with geological background to find out the suitable combinations of land cover, soil and guidelines. For the purpose of identifying the changes in surface flows, 19 catchments were identified with different geology and growth in 40 years facing different ground water levels fluctuations. The increasing built up, varying surface runoff are studied using Arc GIS and SWMM modeling, regression analysis for runoff. Resulting runoff for various land covers and soil groups with varying built up conditions were observed. The modeling procedures also included observations for varying precipitation and constant built up in all catchments. All these observations were combined for individual catchment and single regression curve was obtained for runoff. Thus, it was observed that alluvial with suitable land cover was better for infiltration and least generation of runoff but excess built up could not be sustained on alluvial soil. Similarly, basalt had least recharge and most runoff demanding maximum vegetation over it. Sandstone resulted in good recharging if planned with more open spaces and natural soils with intermittent vegetation. Hence, these observations made a keystone base for planners while planning various land uses on different soils. This paper contributes and provides a solution to basic knowledge gap, which urban planners face during development of natural surfaces.
Keywords: Runoff, built up, roughness, recharge, temporal changes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462813 Neural Network Based Predictive DTC Algorithm for Induction Motors
Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad
Abstract:
In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.Keywords: Neural Networks, Predictive DTC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394812 Representation of Power System for Electromagnetic Transient Calculation
Authors: P. Sowa
Abstract:
The new idea of analyze of power system failure with use of artificial neural network is proposed. An analysis of the possibility of simulating phenomena accompanying system faults and restitution is described. It was indicated that the universal model for the simulation of phenomena in whole analyzed range does not exist. The main classic method of search of optimal structure and parameter identification are described shortly. The example with results of calculation is shown.Keywords: Dynamic equivalents, Network reduction, Neural networks, Power system analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902811 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach
Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar
Abstract:
Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.
Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964810 A Mark-Up Approach to Add Value
Authors: Ivaylo I. Atanasov, Evelina N.Pencheva
Abstract:
This paper presents a mark-up approach to service creation in Next Generation Networks. The approach allows deriving added value from network functions exposed by Parlay/OSA (Open Service Access) interfaces. With OSA interfaces service logic scripts might be executed both on callrelated and call-unrelated events. To illustrate the approach XMLbased language constructions for data and method definitions, flow control, time measuring and supervision and database access are given and an example of OSA application is considered.
Keywords: Service creation, mark-up approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689809 Understanding Help Seeking among Black Women with Clinically Significant Posttraumatic Stress Symptoms
Authors: Glenda Wrenn, Juliet Muzere, Meldra Hall, Allyson Belton, Kisha Holden, Chanita Hughes-Halbert, Martha Kent, Bekh Bradley
Abstract:
Understanding the help seeking decision making process and experiences of health disparity populations with posttraumatic stress disorder (PTSD) is central to development of trauma-informed, culturally centered, and patient focused services. Yet, little is known about the decision making process among adult Black women who are non-treatment seekers as they are, by definition, not engaged in services. Methods: Audiotaped interviews were conducted with 30 African American adult women with clinically significant PTSD symptoms who were engaged in primary care, but not in treatment for PTSD despite symptom burden. A qualitative interview guide was used to elucidate key themes. Independent coding of themes mapped to theory and identification of emergent themes were conducted using qualitative methods. An existing quantitative dataset was analyzed to contextualize responses and provide a descriptive summary of the sample. Results: Emergent themes revealed that active mental avoidance, the intermittent nature of distress, ambivalence, and self-identified resilience as undermining to help seeking decisions. Participants were stuck within the help-seeking phase of ‘recognition’ of illness and retained a sense of “it is my decision” despite endorsing significant social and environmental negative influencers. Participants distinguished ‘help acceptance’ from ‘help seeking’ with greater willingness to accept help and importance placed on being of help to others. Conclusions: Elucidation of the decision-making process from the perspective of non-treatment seekers has implications for outreach and treatment within models of integrated and specialty systems care. The salience of responses to trauma symptoms and stagnation in the help seeking recognition phase are findings relevant to integrated care service design and community engagement.Keywords: Culture, help-seeking, integrated care, PTSD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124808 On the Reliability of Low Voltage Network with Small Scale Distributed Generators
Authors: Rade M. Ciric, Nikola Lj.Rajakovic
Abstract:
Since the 80s huge efforts have been made to utilize renewable energy sources to generate electric power. This paper reports some aspects of integration of the distributed generators into the low voltage distribution networks. An assessment of impact of the distributed generators on the reliability indices of low voltage network is performed. Results obtained from case study using low voltage network, are presented and discussed.Keywords: low voltage network, distributed generation, reliability indices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802807 Protection Plan of Medium Voltage Distribution Network in Tunisia
Abstract:
The distribution networks are often exposed to harmful incidents which can halt the electricity supply of the customer. In this context, we studied a real case of a critical zone of the Tunisian network which is currently characterized by the dysfunction of its plan of protection. In this paper, we were interested in the harmonization of the protection plan settings in order to ensure a perfect selectivity and a better continuity of service on the whole of the network.
Keywords: Distribution network Gabes-Tunisia, NEPLAN©DACH, protection plan settings, selectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961806 A Grid-based Neural Network Framework for Multimodal Biometrics
Authors: Sitalakshmi Venkataraman
Abstract:
Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.Keywords: Back Propagation, Grid Services, MultimodalBiometrics, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920