Search results for: accounting information systems
6543 Improved Asymptotic Stability Analysis for Lure Systems with Neutral Type and Time-varying Delays
Authors: Changchun Shen, Shouming Zhong
Abstract:
This paper investigates the problem of absolute stability and robust stability of a class of Lur-e systems with neutral type and time-varying delays. By using Lyapunov direct method and linear matrix inequality technique, new delay-dependent stability criteria are obtained and formulated in terms of linear matrix inequalities (LMIs) which are easy to check the stability of the considered systems. To obtain less conservative stability conditions, an operator is defined to construct the Lyapunov functional. Also, the free weighting matrices approach combining a matrix inequality technique is used to reduce the entailed conservativeness. Numerical examples are given to indicate significant improvements over some existing results.
Keywords: Lur'e system, linear matrix inequalities, Lyapunov, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17916542 Capacity and Performance Analysis of Space-Time Block Coded MIMO-OFDM Systems over Rician Fading Channel
Authors: Imran Khan, Shujaat Ali Khan Tanoli, Nandana Rajatheva
Abstract:
This paper presents an analysis on the capacity and performance of MIMO-OFDM systems. The work is focused on the capacity of MIMO-OFDM systems over rician fading channel, in the case of the channel being known at the receiver only, which is more practical case of the channel. Simple expression for capacity is derived for the case of correlated rician fading. The performance of some MIMO-OFDM implementations with rician fading model is presented using an Alamouti coding scheme and Simulation results are obtained for both capacity and performance analysis.
Keywords: MIMO, OFDM, rician distribution, space time blockcodes (STBC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21076541 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal
Authors: E. Bakkaloğlu, N. Torunbalcı
Abstract:
Earthquakes are inevitable natural disasters in Turkey. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-story hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkey, using seismic isolators in public hospitals, which are placed in first degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-story hospital buildings in cities where those problems are experienced. Although there is widespread use of seismic isolators in Japan, there are few multi-story buildings in which seismic isolators are used in Turkey. As it is known, base isolation systems are the most effective methods of earthquake resistance, as the number of floors increases, the center of gravity moves away from the base in multi-story buildings, increasing the overturning effect and limiting use of these systems. In this context, it is aimed to investigate structural systems of multi-story buildings which are built using seismic isolation methods in the world. In addition to this, a working principle is suggested for the disseminating seismic isolator used in multi-story hospital buildings. The results to be obtained from the study will guide architects who design multi-story hospital buildings in their architectural designs, and engineers in terms of structural system design.
Keywords: Earthquake, energy absorbing systems, hospital, seismic isolation systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386540 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags
Authors: Elias Akoury
Abstract:
Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.
Keywords: Lanthanide Tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9896539 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures
Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen
Abstract:
Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.
Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17816538 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses
Authors: Erin Lynne Plettenberg, Jeremy Vickery
Abstract:
In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.
Keywords: Ontology, logic modeling, electronic medical records, information extraction, vetted web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9366537 Event Monitoring Based On Web Services for Heterogeneous Event Sources
Authors: Arne Koschel
Abstract:
This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.
Keywords: Event monitoring, ECA, CEP, SOA, Web services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23446536 An Analysis of Blackouts for Electric Power Transmission Systems
Authors: Karamitsos Ioannis, Orfanidis Konstantinos
Abstract:
In this paper an analysis of blackouts in electric power transmission systems is implemented using a model and studied in simple networks with a regular topology. The proposed model describes load demand and network improvements evolving on a slow timescale as well as the fast dynamics of cascading overloads and outages.Keywords: Blackout, Generator, Load, Power Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14716535 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms
Authors: T. S. Chou, K. K. Yen, J. Luo
Abstract:
The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19336534 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor
Authors: Ekaterina Artiukhina, Panagiotis Grammelis
Abstract:
Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion, and co-firing applications. In the course of torrefaction, the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The nonstationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.
Keywords: Torrefaction, biomass pellets, model, heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18026533 The Effectiveness of Banks’ Web Sites: A Study of Turkish Banking Sector
Authors: Raif Parlakkaya, Huseyin Cetin, Duygu Irdiren
Abstract:
By the development of World Wide Web, the usage rate of Internet has rapidly grown globally; and provided a basis for the emergence of electronic business. As well as other sectors, the banking sector has adopted the use of internet with the developments in information and communication technologies. Due to the public disclosure and transparency principle of Corporate Governance, the importance of information disclosure of banks on their web sites has increased significantly. For the purpose of this study, a Bank Disclosure Attribute Index (BDAI) in Turkey has been constructed through classifying the information disclosure on banks’ web sites into general, financial, investors and corporate governance attributes. All 47 banks in Turkish Banking System have been evaluated according to the index with the aim of providing a comparison between banks. By Chi Square Test, Pearson Correlation, T-Test, and ANOVA statistical tools, it has been concluded that the majority of banks in Turkey have shared information on their web sites adequately with respect to their total index score. Although there is a positive correlation between various types of information on banks’ web sites, there is no uniformity among them. Also, no significant difference between various types of information disclosure and bank types has been observed. Compared with the total index score averages of the five largest banks in Turkey, there are some banks that need to improve the content of their web sites.
Keywords: Banking sector, public disclosure, Turkey, web site evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14256532 Connected Objects with Optical Rectenna for Wireless Information Systems
Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli
Abstract:
Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.Keywords: Antenna, Rectenna, solar cell, 5G, optical RECTENNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4846531 Model based Soft-Sensor for Industrial Crystallization: On-line Mass of Crystals and Solubility Measurement
Authors: Cédric Damour, Michel Benne, Brigitte Grondin-Perez, Jean-Pierre Chabriat
Abstract:
Monitoring and control of cane sugar crystallization processes depend on the stability of the supersaturation (σ ) state. The most widely used information to represent σ is the electrical conductivity κ of the solutions. Nevertheless, previous studies point out the shortcomings of this approach: κ may be regarded as inappropriate to guarantee an accurate estimation of σ in impure solutions. To improve the process control efficiency, additional information is necessary. The mass of crystals in the solution ( c m ) and the solubility (mass ratio of sugar to water / s w m m ) are relevant to complete information. Indeed, c m inherently contains information about the mass balance and / s w m m contains information about the supersaturation state of the solution. The main problem is that c m and / s w m m are not available on-line. In this paper, a model based soft-sensor is presented for a final crystallization stage (C sugar). Simulation results obtained on industrial data show the reliability of this approach, c m and the crystal content ( cc ) being estimated with a sufficient accuracy for achieving on-line monitoring in industryKeywords: Soft-sensor, on-line monitoring, cane sugarcrystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21366530 Pervasive Differentiated Services: A QoS Model for Pervasive Systems
Authors: Sherif G. Aly
Abstract:
In this article, we introduce a mechanism by which the same concept of differentiated services used in network transmission can be applied to provide quality of service levels to pervasive systems applications. The classical DiffServ model, including marking and classification, assured forwarding, and expedited forwarding, are all utilized to create quality of service guarantees for various pervasive applications requiring different levels of quality of service. Through a collection of various sensors, personal devices, and data sources, the transmission of contextsensitive data can automatically occur within a pervasive system with a given quality of service level. Triggers, initiators, sources, and receivers are four entities labeled in our mechanism. An explanation of the role of each is provided, and how quality of service is guaranteed.
Keywords: Pervasive systems, quality of service, differentiated services, mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14976529 Segmentation of Breast Lesions in Ultrasound Images Using Spatial Fuzzy Clustering and Structure Tensors
Authors: Yan Xu, Toshihiro Nishimura
Abstract:
Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.
Keywords: fuzzy c-means, spatial information, structure tensor, ultrasound image segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18046528 Perceptions of Cybersecurity in Government Organizations: Case Study of Bhutan
Authors: Pema Choejey, David Murray, Chun Che Fung
Abstract:
Bhutan is becoming increasingly dependent on Information and Communications Technologies (ICTs), especially the Internet for performing the daily activities of governments, businesses, and individuals. Consequently, information systems and networks are becoming more exposed and vulnerable to cybersecurity threats. This paper highlights the findings of the survey study carried out to understand the perceptions of cybersecurity implementation among government organizations in Bhutan. About 280 ICT personnel were surveyed about the effectiveness of cybersecurity implementation in their organizations. A questionnaire based on a 5 point Likert scale was used to assess the perceptions of respondents. The questions were asked on cybersecurity practices such as cybersecurity policies, awareness and training, and risk management. The survey results show that less than 50% of respondents believe that the cybersecurity implementation is effective: cybersecurity policy (40%), risk management (23%), training and awareness (28%), system development life cycle (34%); incident management (26%), and communications and operational management (40%). The findings suggest that many of the cybersecurity practices are inadequately implemented and therefore, there exist a gap in achieving a required cybersecurity posture. This study recommends government organizations to establish a comprehensive cybersecurity program with emphasis on cybersecurity policy, risk management, and awareness and training. In addition, the research study has practical implications to both government and private organizations for implementing and managing cybersecurity.
Keywords: Awareness and training, cybersecurity, cybersecurity policy, risk management, security risks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15646527 On the Performance of Information Criteria in Latent Segment Models
Authors: Jaime R. S. Fonseca
Abstract:
Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15196526 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats
Authors: Ashly Joseph
Abstract:
Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.
Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986525 Learning and Evaluating Possibilistic Decision Trees using Information Affinity
Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi
Abstract:
This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15156524 Enhancement of a 3D Sound Using Psychoacoustics
Authors: Kyosik Koo, Hyungtai Cha
Abstract:
Generally, in order to create 3D sound using binaural systems, we use head related transfer functions (HRTF) including the information of sounds which is arrived to our ears. But it can decline some three-dimensional effects in the area of a cone of confusion between front and back directions, because of the characteristics of HRTF. In this paper, we propose a new method to use psychoacoustics theory that reduces the confusion of sound image localization. In the method, HRTF spectrum characteristic is enhanced by using the energy ratio of the bark band. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methodsKeywords: HRTF, 3D sound, Psychoacoustics, Localization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20256523 Study on the Integration Schemes and Performance Comparisons of Different Integrated Solar Combined Cycle-Direct Steam Generation Systems
Authors: Liqiang Duan, Ma Jingkai, Lv Zhipeng, Haifan Cai
Abstract:
The integrated solar combined cycle (ISCC) system has a series of advantages such as increasing the system power generation, reducing the cost of solar power generation, less pollutant and CO2 emission. In this paper, the parabolic trough collectors with direct steam generation (DSG) technology are considered to replace the heat load of heating surfaces in heat regenerator steam generation (HRSG) of a conventional natural gas combined cycle (NGCC) system containing a PG9351FA gas turbine and a triple pressure HRSG with reheat. The detailed model of the NGCC system is built in ASPEN PLUS software and the parabolic trough collectors with DSG technology is modeled in EBSILON software. ISCC-DSG systems with the replacement of single, two, three and four heating surfaces are studied in this paper. Results show that: (1) the ISCC-DSG systems with the replacement heat load of HPB, HPB+LPE, HPE2+HPB+HPS, HPE1+HPE2+ HPB+HPS are the best integration schemes when single, two, three and four stages of heating surfaces are partly replaced by the parabolic trough solar energy collectors with DSG technology. (2) Both the changes of feed water flow and the heat load of the heating surfaces in ISCC-DSG systems with the replacement of multi-stage heating surfaces are smaller than those in ISCC-DSG systems with the replacement of single heating surface. (3) ISCC-DSG systems with the replacement of HPB+LPE heating surfaces can increase the solar power output significantly. (4) The ISCC-DSG systems with the replacement of HPB heating surfaces has the highest solar-thermal-to-electricity efficiency (47.45%) and the solar radiation energy-to-electricity efficiency (30.37%), as well as the highest exergy efficiency of solar field (33.61%).
Keywords: HRSG, integration scheme, parabolic trough collectors with DSG technology, solar power generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8926522 MIM: A Species Independent Approach for Classifying Coding and Non-Coding DNA Sequences in Bacterial and Archaeal Genomes
Authors: Achraf El Allali, John R. Rose
Abstract:
A number of competing methodologies have been developed to identify genes and classify DNA sequences into coding and non-coding sequences. This classification process is fundamental in gene finding and gene annotation tools and is one of the most challenging tasks in bioinformatics and computational biology. An information theory measure based on mutual information has shown good accuracy in classifying DNA sequences into coding and noncoding. In this paper we describe a species independent iterative approach that distinguishes coding from non-coding sequences using the mutual information measure (MIM). A set of sixty prokaryotes is used to extract universal training data. To facilitate comparisons with the published results of other researchers, a test set of 51 bacterial and archaeal genomes was used to evaluate MIM. These results demonstrate that MIM produces superior results while remaining species independent.Keywords: Coding Non-coding Classification, Entropy, GeneRecognition, Mutual Information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17286521 Reachable Set Bounding Estimation for Distributed Delay Systems with Disturbances
Authors: Li Xu, Shouming Zhong
Abstract:
The reachable set bounding estimation for distributed delay systems with disturbances is a new problem. In this paper,we consider this problem subject to not only time varying delay and polytopic uncertainties but also distributed delay systems which is not studied fully untill now. we can obtain improved non-ellipsoidal reachable set estimation for neural networks with time-varying delay by the maximal Lyapunov-Krasovskii fuctional which is constructed as the pointwise maximum of a family of Lyapunov-Krasovskii fuctionals corresponds to vertexes of uncertain polytope.On the other hand,matrix inequalities containing only one scalar and Matlabs LMI Toolbox is utilized to give a non-ellipsoidal description of the reachable set.finally,numerical examples are given to illustrate the existing results.
Keywords: Reachable set, Distributed delay, Lyapunov-Krasovskii function, Polytopic uncertainties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18566520 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay
Authors: Caigen Zhou, Haibo Jiang
Abstract:
The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16966519 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater
Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu
Abstract:
The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.Keywords: Algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, nutrients removal, saline wastewater, sequencing batch reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11786518 A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search
Authors: Hikmat A. M. Abd-El-Jaber, Tengku M. T. Sembok
Abstract:
The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.Keywords: information retrieval, user profiles, semantic Web, ontology, search engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32196517 PAPR Reduction in OFDM Systems Using Orthogonal Eigenvector Matrix
Authors: Md. Mahmudul Hasan
Abstract:
OFDM systems are known to have a high PAPR (Peak-to-Average Power Ratio) compared with single-carrier systems. In fact, the high PAPR is one of the most detrimental aspects in the OFDM system, as it can cause power degradation (Inband distortion) and spectral spreading (Out-of-band radiation). In this paper, from the foundation of the PAPR analysis an effective method of PAPR reduction has been proposed based on Orthogonal Eigenvector Matrix (OEM) transform. Extensive computer simulations show that a PAPR reduction of up to 4.4 dB can be obtained without introducing in-band distortion or out-of-band radiation in the system.
Keywords: Orthogonal frequency division multiplexing (OFDM), peak-to-average power ratio (PAPR), Orthogonal Eigenvector Matrix (OEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20226516 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.
Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21326515 Solution of Logistics Center Selection Problem Using the Axiomatic Design Method
Authors: Fulya Zaralı, Harun Resit Yazgan
Abstract:
Logistics centers represent areas that all national and international logistics and activities related to logistics can be implemented by the various businesses. Logistics centers have a key importance in joining the transport stream and the transport system operations. Therefore, it is important where these centers are positioned to be effective and efficient and to show the expected performance of the centers. In this study, the location selection problem to position the logistics center is discussed. Alternative centers are evaluated according certain criteria. The most appropriate center is identified using the axiomatic design method.Keywords: Logistic center, axiomatic design, facility location, information systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17986514 Analysis of Secondary School Students’ Perceptions about Information Technologies through a Word Association Test
Authors: Fetah Eren, Ismail Sahin, Ismail Celik, Ahmet Oguz Akturk
Abstract:
The aim of this study is to discover secondary school students’ perceptions related to information technologies and the connections between concepts in their cognitive structures. A word association test consisting of six concepts related to information technologies is used to collect data from 244 secondary school students. Concept maps that present students’ cognitive structures are drawn with the help of frequency data. Data are analyzed and interpreted according to the connections obtained as a result of the concept maps. It is determined students associate most with these concepts—computer, Internet, and communication of the given concepts, and associate least with these concepts—computer-assisted education and information technologies. These results show the concepts, Internet, communication, and computer, are an important part of students’ cognitive structures. In addition, students mostly answer computer, phone, game, Internet and Facebook as the key concepts. These answers show students regard information technologies as a means for entertainment and free time activity, not as a means for education.
Keywords: Word association test, cognitive structure, information technology, secondary school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079