Search results for: online learning higher-order learning attributes.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2803

Search results for: online learning higher-order learning attributes.

1843 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: Deep learning, field programmable gate array, FPGA, hardware acceleration, convolutional neural networks, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
1842 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
1841 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: Machine learning, Imbalanced data, Data mining, Big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
1840 Enhancement Approaches for Supporting Default Hierarchies Formation for Robot Behaviors

Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam

Abstract:

Robotic system is an important area in artificial intelligence that aims at developing the performance techniques of the robot and making it more efficient and more effective in choosing its correct behavior. In this paper the distributed learning classifier system is used for designing a simulated control system for robot to perform complex behaviors. A set of enhanced approaches that support default hierarchies formation is suggested and compared with each other in order to make the simulated robot more effective in mapping the input to the correct output behavior.

Keywords: Learning Classifier System, Default Hierarchies, Robot Behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1839 Adopting Artificial Intelligence and Deep Learning Techniques in Cloud Computing for Operational Efficiency

Authors: Sandesh Achar

Abstract:

Artificial intelligence (AI) is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remains a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: Artificial intelligence, AI, cloud computing, deep learning, machine learning, ML, internet of things, IoT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627
1838 Pruning Method of Belief Decision Trees

Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli

Abstract:

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.

Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1837 A Completed Adaptive De-mixing Algorithm on Stiefel Manifold for ICA

Authors: Jianwei Wu

Abstract:

Based on the one-bit-matching principle and by turning the de-mixing matrix into an orthogonal matrix via certain normalization, Ma et al proposed a one-bit-matching learning algorithm on the Stiefel manifold for independent component analysis [8]. But this algorithm is not adaptive. In this paper, an algorithm which can extract kurtosis and its sign of each independent source component directly from observation data is firstly introduced.With the algorithm , the one-bit-matching learning algorithm is revised, so that it can make the blind separation on the Stiefel manifold implemented completely in the adaptive mode in the framework of natural gradient.

Keywords: Independent component analysis, kurtosis, Stiefel manifold, super-gaussians or sub-gaussians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
1836 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
1835 Testing the Validity of Maturity Model for E-Government Implementation in Indonesia

Authors: Darmawan Napitupulu, Dana Indra Sensuse, Aniati Murni

Abstract:

The research was conducted to empirically validate the proposed maturity model of e-Government implementation, composed of four dimensions, further specified by 54 success factors as attributes. To do so, there are two steps were performed. First, expert’s judgment was conducted to test its content validity. The second, reliability study was performed to evaluate inter-rater agreement by using Fleiss Kappa approach. The kappa statistic (kappa coefficient) is the most commonly used method for testing the consistency among raters. Fleiss Kappa was a generalization of Kappa in extensions to the case of more than two raters (multiple raters) with multi-categorical ratings. Our findings show that most attributes of the proposed model were related to their corresponding dimensions. According to our results, The percentage of agree answers given by the experts was 73.69% in dimension A, 89.76% in B, 81.5% in C and 60.37% in D. This means that more than half of the attributes of each dimensions were appropriate or relevant to the dimensions they were supposed to measure, while 85% of attributes were relevant enough to their corresponding dimensions. Inter-rater reliability coefficient also showed satisfactory result and interpreted as substantial agreement among raters. Therefore, the proposed model in this paper was valid and reliable to measure the maturity of e-Government implementation.

Keywords: E-Government, Model, Maturity, Validity, Reliability Kappa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
1834 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University

Authors: Suttipong Boonphadung, Thassanant Unnanantn

Abstract:

This research focused on comparing the critical thinking of the teacher students before and after using Miller’s Model learning activities and investigating their opinions. The sampling groups were (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.

Keywords: Critical thinking, Miller’s model, Opinions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
1833 The Keys to Innovation: Defining and Evaluating Attributes that Measure Innovation Capabilities

Authors: Mohammad Samarah, Benjamin Stark, Jennifer Kindle, Langley Payton

Abstract:

Innovation is a key driver for companies, society, and economic growth. However, assessing and measuring innovation for individuals as well as organizations remains difficult. Our i5-Score presented in this study will help to overcome this difficulty and facilitate measuring the innovation potential. The score is based on a framework we call the 5Gs of innovation which defines specific innovation attributes. Those are 1) the drive for long-term goals 2) the audacity to generate new ideas, 3) the openness to share ideas with others, 4) the ability to grow, and 5) the ability to maintain high levels of optimism. To validate the i5-Score, we conducted a study at Florida Polytechnic University. The results show that the i5-Score is a good measure reflecting the innovative mindset of an individual or a group. Thus, the score can be utilized for evaluating, refining and enhancing innovation capabilities.

Keywords: Change management, innovation attributes, organizational development, STEM and venture creation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
1832 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: Deep-learning, image classification, image identification, industrial engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
1831 Quantitative Analysis of Weld Defect Images in Industrial Radiography Based Invariant Attributes

Authors: N. Nacereddine, M. Tridi, S. S. Belaïfa, M. Zelmat

Abstract:

For the characterization of the weld defect region in the radiographic image, looking for features which are invariant regarding the geometrical transformations (rotation, translation and scaling) proves to be necessary because the same defect can be seen from several angles according to the orientation and the distance from the welded framework to the radiation source. Thus, panoply of geometrical attributes satisfying the above conditions is proposed and which result from the calculation of the geometrical parameters (surface, perimeter, etc.) on the one hand and the calculation of the different order moments, on the other hand. Because the large range in values of the raw features and taking into account other considerations imposed by some classifiers, the scaling of these values to lie between 0 and 1 is indispensable. The principal component analysis technique is used in order to reduce the number of the attribute variables in the aim to give better performance to the further defect classification.

Keywords: Geometric parameters, invariant attributes, principal component analysis, weld defect image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1830 Comprehensive Analysis of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi

Abstract:

Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.

Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
1829 Correlational Analysis between Brain Dominances and Multiple Intelligences

Authors: Lakshmi Dhandabani, Rajeev Sukumaran

Abstract:

Aim of this research study is to investigate and establish the characteristics of brain dominances (BD) and multiple intelligences (MI). This experimentation has been conducted for the sample size of 552 undergraduate computer-engineering students. In addition, mathematical formulation has been established to exhibit the relation between thinking and intelligence, and its correlation has been analyzed. Correlation analysis has been statistically measured using Pearson’s coefficient. Analysis of the results proves that there is a strong relational existence between thinking and intelligence. This research is carried to improve the didactic methods in engineering learning and also to improve e-learning strategies.

Keywords: Thinking style assessment, correlational analysis, mathematical model, data analysis, dynamic equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
1828 Meditation Based Brain Painting Promoting Foreign Language Memory through Establishing a Brain-Computer Interface

Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny

Abstract:

In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide insights into meditation, creative language education, brain-computer interface, and human-computer interactions.

Keywords: Brain-computer interface, creative thinking, meditation, mental health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
1827 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. This necessitates increased resource consumption and underscores the importance of addressing sustainable agriculture development along with other environmental considerations. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for 10 different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: Land suitability, machine learning, random forest, sustainable agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283
1826 HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features

Authors: Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng

Abstract:

Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies.

Keywords: HTML5, Web Worker, Canvas, Web Socket.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
1825 Cellular Phone Users- Willingness to Shop Online

Authors: Norazah Mohd Suki, Norbayah Mohd Suki

Abstract:

This study aims to identify cellular phone users- shopping motivating factors towards online shopping. 100 university students located in Klang Valley, Malaysia were involved as the respondents. They were required to complete a set of questionnaire and had to own a cellular phone in order to be selected as sample in this study. Three from five proposed hypotheses were supported: purchasing information, shopping utilities and service quality. As a result, marketers and retailers should concentrate more on the less important factors in order to encourage and create willingness of the consumers to purchase online. Recommendation for future research is also presented.

Keywords: Motivation, Online Shopping, Purchasing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
1824 An iTunes U App for Development of Metacognition Skills Delivered in the Enrichment Program Offered to Gifted Students at the Secondary Level

Authors: Maha Awad M. Almuttairi

Abstract:

This research aimed to measure the impact of the use of a mobile learning (iTunes U) app for the development of metacognition skills delivered in the enrichment program offered to gifted students at the secondary level in Jeddah. The author targeted a group of students on an experimental scale to evaluate the achievement. The research sample consisted of a group of 38 gifted female students. The scale of evaluation of the metacognition skills used to measure the performance of students in the enrichment program was as follows: Satisfaction scale for the assessment of the technique used and the final product form after completion of the program. Appropriate statistical treatment used includes Paired Samples T-Test Cronbach’s alpha formula and eta squared formula. It was concluded in the results the difference of α≤ 0.05, which means the performance of students in the skills of metacognition in favor of using iTunes U. In light of the conclusion of the experiment, a number of recommendations and suggestions were present; the most important benefit of mobile learning applications is to provide enrichment programs for gifted students in the Kingdom of Saudi Arabia, as well as conducting further research on mobile learning and gifted student teaching.

Keywords: Enrichment program, gifted students, metacognition skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717
1823 An Investigation into the Role of School Social Workers and Psychologists with Children Experiencing Special Educational Needs in Libya

Authors: Abdelbasit Gadour

Abstract:

This study explores the function of schools’ psychosocial services within Libyan mainstream schools in relation to children’s special educational needs (SEN). This is with the aim to examine the role of school social workers and psychologists in the assessment procedure of children with SEN. A semi-structured interview was used in this study, with 21 professionals working in the schools’ psychosocial services, of whom 13 were school social workers (SSWs) and eight were school psychologists (SPs). The results of the interviews with SSWs and SPs provided insights into how SEN children are identified, assessed, and dealt with by school professionals. It appears from the results that what constitutes a problem has not changed significantly, and the link between learning difficulties and behavioural difficulties is also evident from this study. Children with behaviour difficulties are more likely to be referred to school psychosocial services than children with learning difficulties. Yet, it is not clear from the interviews with SSWs and SPs whether children are excluded merely because of their behaviour problems. Instead, they would surely be expelled from the school if they failed academically. Furthermore, the interviews with SSWs and SPs yield a rather unusual source accountable for children’s SEN; school-related difficulties were a major factor in which almost all participants attributed children’s learning and behaviour problems to teachers’ deficiencies, followed by school lack of resources.

Keywords: Special education, school, social workers, psychologist.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
1822 Design Method for Knowledge Base Systems in Education Using COKB-ONT

Authors: Nhon Do, Tuyen Trong Tran, Phan Hoai Truong

Abstract:

Nowadays e-Learning is more popular, in Vietnam especially. In e-learning, materials for studying are very important. It is necessary to design the knowledge base systems and expert systems which support for searching, querying, solving of problems. The ontology, which was called Computational Object Knowledge Base Ontology (COB-ONT), is a useful tool for designing knowledge base systems in practice. In this paper, a design method for knowledge base systems in education using COKB-ONT will be presented. We also present the design of a knowledge base system that supports studying knowledge and solving problems in higher mathematics.

Keywords: artificial intelligence, knowledge base systems, ontology, educational software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
1821 Prospective English Language Teachers’ Views on Translation Use in Foreign Language Teaching

Authors: Ozlem Bozok, Yusuf Bozok

Abstract:

The importance of using mother tongue and translation in foreign language classrooms cannot be ignored and translation can be utilized as a method in English Language Teaching courses. There exist researches advocating or objecting to the use of translation in foreign language learning but they all have a point in common: Translation should be used as an aid to teaching, not an end in itself. In this research, prospective English language teachers’ opinions about translation use and use of mother tongue in foreign language teaching are investigated and according to the findings, some explanations and recommendations are made.

Keywords: Exposure to foreign language, translation, foreign language learning, prospective teachers’ opinions, use of L1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
1820 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping

Authors: Xiuqin Ma, Hongwu Qin

Abstract:

A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.

Keywords: Normal parameter reduction, Online shopping, Parameter reduction, Soft sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1819 Categorical Clustering By Converting Associated Information

Authors: Dongmin Cai, Stephen S-T Yau

Abstract:

Lacking an inherent “natural" dissimilarity measure between objects in categorical dataset presents special difficulties in clustering analysis. However, each categorical attributes from a given dataset provides natural probability and information in the sense of Shannon. In this paper, we proposed a novel method which heuristically converts categorical attributes to numerical values by exploiting such associated information. We conduct an experimental study with real-life categorical dataset. The experiment demonstrates the effectiveness of our approach.

Keywords: Categorical, Clustering, Converting, Information

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
1818 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
1817 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
1816 Neural Network Learning Based on Chaos

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.

Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
1815 Efficient Web-Learning Collision Detection Tool on Five-Axis Machine

Authors: Chia-Jung Chen, Rong-Shine Lin, Rong-Guey Chang

Abstract:

As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.

Keywords: Collision detection, Five-axis machining, Separating axis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1814 Evaluation of Risk Attributes Driven by Periodically Changing System Functionality

Authors: Dariusz Dymek, Leszek Kotulski

Abstract:

Modeling of the distributed systems allows us to represent the whole its functionality. The working system instance rarely fulfils the whole functionality represented by model; usually some parts of this functionality should be accessible periodically. The reporting system based on the Data Warehouse concept seams to be an intuitive example of the system that some of its functionality is required only from time to time. Analyzing an enterprise risk associated with the periodical change of the system functionality, we should consider not only the inaccessibility of the components (object) but also their functions (methods), and the impact of such a situation on the system functionality from the business point of view. In the paper we suggest that the risk attributes should be estimated from risk attributes specified at the requirements level (Use Case in the UML model) on the base of the information about the structure of the model (presented at other levels of the UML model). We argue that it is desirable to consider the influence of periodical changes in requirements on the enterprise risk estimation. Finally, the proposition of such a solution basing on the UML system model is presented.

Keywords: Risk assessing, software maintenance, UML, graph grammars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385