Search results for: data protection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7930

Search results for: data protection

6970 On Methodologies for Analysing Sickness Absence Data: An Insight into a New Method

Authors: Xiaoshu Lu, Päivi Leino-Arjas, Kustaa Piha, Akseli Aittomäki, Peppiina Saastamoinen, Ossi Rahkonen, Eero Lahelma

Abstract:

Sickness absence represents a major economic and social issue. Analysis of sick leave data is a recurrent challenge to analysts because of the complexity of the data structure which is often time dependent, highly skewed and clumped at zero. Ignoring these features to make statistical inference is likely to be inefficient and misguided. Traditional approaches do not address these problems. In this study, we discuss model methodologies in terms of statistical techniques for addressing the difficulties with sick leave data. We also introduce and demonstrate a new method by performing a longitudinal assessment of long-term absenteeism using a large registration dataset as a working example available from the Helsinki Health Study for municipal employees from Finland during the period of 1990-1999. We present a comparative study on model selection and a critical analysis of the temporal trends, the occurrence and degree of long-term sickness absences among municipal employees. The strengths of this working example include the large sample size over a long follow-up period providing strong evidence in supporting of the new model. Our main goal is to propose a way to select an appropriate model and to introduce a new methodology for analysing sickness absence data as well as to demonstrate model applicability to complicated longitudinal data.

Keywords: Sickness absence, longitudinal data, methodologies, mix-distribution model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
6969 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
6968 Phase Jitter Transfer in High Speed Data Links

Authors: Tsunwai Gary Yip

Abstract:

Phase locked loops in 10 Gb/s and faster data links are low phase noise devices. Characterization of their phase jitter transfer functions is difficult because the intrinsic noise of the PLLs is comparable to the phase noise of the reference clock signal. The problem is solved by using a linear model to account for the intrinsic noise. This study also introduces a novel technique for measuring the transfer function. It involves the use of the reference clock as a source of wideband excitation, in contrast to the commonly used sinusoidal excitations at discrete frequencies. The data reported here include the intrinsic noise of a PLL for 10 Gb/s links and the jitter transfer function of a PLL for 12.8 Gb/s links. The measured transfer function suggests that the PLL responded like a second order linear system to a low noise reference clock.

Keywords: Intrinsic phase noise, jitter in data link, PLL jitter transfer function, high speed clocking in electronic circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
6967 A Review in Recent Development of Network Threats and Security Measures

Authors: Roza Dastres, Mohsen Soori

Abstract:

Networks are vulnerable devices due to their basic feature of facilitating remote access and data communication. The information in the networks needs to be kept secured and safe in order to provide an effective communication and sharing device in the web of data. Due to challenges and threats of the data in networks, the network security is one of the most important considerations in information technology infrastructures. As a result, the security measures are considered in the network in order to decrease the probability of accessing the secured data by the hackers. The purpose of network security is to protect the network and its components from unauthorized access and abuse in order to provide a safe and secured communication device for the users. In the present research work a review in recent development of network threats and security measures is presented and future research works are also suggested. Different attacks to the networks and security measured against them are discussed in order to increase security in the web of data. So, new ideas in the network security systems can be presented by analyzing the published papers in order to move forward the research field.

Keywords: Network threats, network security, security measures, firewalls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
6966 Green Technologies and Sustainability in the Care and Maintenance of Protective Textiles

Authors: R. Nayak, T. Panwar, R. Padhye

Abstract:

Protective textiles get soiled, stained and even worn during their use, which may not be usable after a certain period due to the loss of protective performance. They need regular cleaning and maintenance, which helps to extend the durability of the clothing, retains their useful properties and ensures that fresh clothing is ready to wear when needed. Generally, the cleaning processes used for various protective clothing include dry-cleaning (using solvents) or wet cleaning (using water). These cleaning processes can alter the fabric surface properties, dimensions, and physical, mechanical and performance properties. The technology of laundering and dry-cleaning has undergone several changes. Sustainable methods and products are available for faster, safer and improved cleaning of protective textiles. We performed a comprehensive and systematic review of green technologies and eco-friendly products for sustainable cleaning of protective textiles. Special emphasis is given on the care and maintenance procedures of protective textiles for protection from fire, bullets, chemical and other types of protective clothing.

Keywords: Sustainable cleaning, protective textiles, eco-friendly cleaning, ozone laundering, ultrasonic cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
6965 A Review on Soft Computing Technique in Intrusion Detection System

Authors: Noor Suhana Sulaiman, Rohani Abu Bakar, Norrozila Sulaiman

Abstract:

Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.

Keywords: Intrusion Detection System, security, soft computing, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
6964 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: Multi-objective decision support, analysis, data validation, freight delivery, multi-modal transportation, genetic programming methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
6963 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation

Authors: Christhu Raj M. R., Rajeev Sukumaran

Abstract:

Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.

Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
6962 Isobaric Vapor-Liquid Equilibrium Data for Binary Mixture of 2-Methyltetrahydrofuran and Cumene

Authors: V. K. Rattan, Baljinder K. Gill, Seema Kapoor

Abstract:

Isobaric vapor-liquid equilibrium measurements are reported for binary mixture of 2-Methyltetrahydrofuran and Cumene at 97.3 kPa. The data were obtained using a vapor recirculating type (modified Othmer's) equilibrium still. The mixture shows slight negative deviation from ideality. The system does not form an azeotrope. The experimental data obtained in this study are thermodynamically consistent according to the Herington test. The activity coefficients have been satisfactorily correlated by means of the Margules, and NRTL equations. Excess Gibbs free energy has been calculated from the experimental data. The values of activity coefficients have also been obtained by the UNIFAC group contribution method.

Keywords: Binary mixture, 2-Methyltetrahydrofuran, Cumene, Vapor-liquid equilibrium, UNIFAC, Excess Gibbs free energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723
6961 Physicochemical Parameters of Tap Water in Dhahran, Saudi Arabia: An Empirical Assessment

Authors: Ahmed A. Hassan, Bassam Tawabini

Abstract:

In this study, the physicochemical parameters of Dhahran tap water were assessed to determine its suitability for drinking purposes. A total of 45 water samples were collected from different locations. The results indicate temperature ranges of 19.76 to 22.86 °C, pH (6.5 to 8.23), dissolved oxygen (4.21 to 8.32 mg/L), conductivity (232 to 2586 uS/cm), turbidity (0.17 to 0.37 Nephelometric Turbidity unit (NTU)), total dissolved solids (93 to 1671 mg/L), total alkalinity (4.11 to 24.04 mg/L), calcium (0.02 to 164 mg/L), magnesium (0 .6 to 77.9 mg/L), chloride (32.7 to 568.7 mg/L), nitrate (0.02 to 3 mg/L), fluoride (0.001 to 0.591 mg/L), sodium (18.4 to 232 mg/L), potassium (0.5 to 26.4 mg/L), and sulphate (2.39 to 258 mg/L). The results were compared with the drinking water standards recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA). The study determined that though the levels of most of the physicochemical parameters comply with the standards, however, slight deviations exist. This is evident in the values of the physical parameters (conductivity and total dissolved solids), and the chemical parameters (sulphate, chloride, and sodium) recorded at a few sample sites.

Keywords: Physicochemical parameters, tap water, water quality, Dhahran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
6960 A Keyword-Based Filtering Technique of Document-Centric XML using NFA Representation

Authors: Changwoo Byun, Kyounghan Lee, Seog Park

Abstract:

XML is becoming a de facto standard for online data exchange. Existing XML filtering techniques based on a publish/subscribe model are focused on the highly structured data marked up with XML tags. These techniques are efficient in filtering the documents of data-centric XML but are not effective in filtering the element contents of the document-centric XML. In this paper, we propose an extended XPath specification which includes a special matching character '%' used in the LIKE operation of SQL in order to solve the difficulty of writing some queries to adequately filter element contents using the previous XPath specification. We also present a novel technique for filtering a collection of document-centric XMLs, called Pfilter, which is able to exploit the extended XPath specification. We show several performance studies, efficiency and scalability using the multi-query processing time (MQPT).

Keywords: XML Data Stream, Document-centric XML, Filtering Technique, Value-based Predicates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
6959 A Mixture Model of Two Different Distributions Approach to the Analysis of Heterogeneous Survival Data

Authors: Ülkü Erişoğlu, Murat Erişoğlu, Hamza Erol

Abstract:

In this paper we propose a mixture of two different distributions such as Exponential-Gamma, Exponential-Weibull and Gamma-Weibull to model heterogeneous survival data. Various properties of the proposed mixture of two different distributions are discussed. Maximum likelihood estimations of the parameters are obtained by using the EM algorithm. Illustrative example based on real data are also given.

Keywords: Exponential-Gamma, Exponential-Weibull, Gamma-Weibull, EM Algorithm, Survival Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4070
6958 Motion Recognition Based On Fuzzy WP Feature Extraction Approach

Authors: Keun-Chang Kwak

Abstract:

This paper is concerned with motion recognition based fuzzy WP(Wavelet Packet) feature extraction approach from Vicon physical data sets. For this purpose, we use an efficient fuzzy mutual-information-based WP transform for feature extraction. This method estimates the required mutual information using a novel approach based on fuzzy membership function. The physical action data set includes 10 normal and 10 aggressive physical actions that measure the human activity. The data have been collected from 10 subjects using the Vicon 3D tracker. The experiments consist of running, seating, and walking as physical activity motion among various activities. The experimental results revealed that the presented feature extraction approach showed good recognition performance.

Keywords: Motion recognition, fuzzy wavelet packet, Vicon physical data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
6957 DCBOR: A Density Clustering Based on Outlier Removal

Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Data clustering is an important data exploration technique with many applications in data mining. We present an enhanced version of the well known single link clustering algorithm. We will refer to this algorithm as DCBOR. The proposed algorithm alleviates the chain effect by removing the outliers from the given dataset. So this algorithm provides outlier detection and data clustering simultaneously. This algorithm does not need to update the distance matrix, since the algorithm depends on merging the most k-nearest objects in one step and the cluster continues grow as long as possible under specified condition. So the algorithm consists of two phases; at the first phase, it removes the outliers from the input dataset. At the second phase, it performs the clustering process. This algorithm discovers clusters of different shapes, sizes, densities and requires only one input parameter; this parameter represents a threshold for outlier points. The value of the input parameter is ranging from 0 to 1. The algorithm supports the user in determining an appropriate value for it. We have tested this algorithm on different datasets contain outlier and connecting clusters by chain of density points, and the algorithm discovers the correct clusters. The results of our experiments demonstrate the effectiveness and the efficiency of DCBOR.

Keywords: Data Clustering, Clustering Algorithms, Handling Noise, Arbitrary Shape of Clusters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
6956 Alternative to M-Estimates in Multisensor Data Fusion

Authors: Nga-Viet Nguyen, Georgy Shevlyakov, Vladimir Shin

Abstract:

To solve the problem of multisensor data fusion under non-Gaussian channel noise. The advanced M-estimates are known to be robust solution while trading off some accuracy. In order to improve the estimation accuracy while still maintaining the equivalent robustness, a two-stage robust fusion algorithm is proposed using preliminary rejection of outliers then an optimal linear fusion. The numerical experiments show that the proposed algorithm is equivalent to the M-estimates in the case of uncorrelated local estimates and significantly outperforms the M-estimates when local estimates are correlated.

Keywords: Data fusion, estimation, robustness, M-estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
6955 Connect among Green, Sustainability and Hotel Industry: A Prospective Simulation Study

Authors: Leena N. Fukey, Surya S. Issac

Abstract:

This review paper aims at understanding the importance of implementing sustainable green practices in the current hotel industry and the perception of the same from the point of view of the customers as well as the industry experts. Many hotels have benefited from green management such as enhanced reputation of the firm and more worth customers. For the business standing, it reduces business’s cost for posting advertisements and the clear hotel’s orientation shows hotels’ positive image which might increase employees’ recognition toward the business. Sustainability in business is the growth in lively processes which enable people to understand the potential to protect the Earth’s existent support systems. Well, looking to the future today’s green concerns will definitely become facet of more synchronized business environment, perhaps the concerns discussed in this study, may exchange a few words which hotels may consider in near future to widen awareness and improve business model.

Keywords: Environmental Protection, Green Hotel Concept, Hotel Industry, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8868
6954 Data Structures and Algorithms of Intelligent Web-Based System for Modular Design

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

In recent years, new product development became more and more competitive and globalized, and the designing phase is critical for the product success. The concept of modularity can provide the necessary foundation for organizations to design products that can respond rapidly to market needs. The paper describes data structures and algorithms of intelligent Web-based system for modular design taking into account modules compatibility relationship and given design requirements. The system intelligence is realized by developed algorithms for choice of modules reflecting all system restrictions and requirements. The proposed data structure and algorithms are illustrated by case study of personal computer configuration. The applicability of the proposed approach is tested through a prototype of Web-based system.

Keywords: Data structures, algorithms, intelligent web-based system, modular design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
6953 Self Watermarking based on Visual Cryptography

Authors: Mahmoud A. Hassan, Mohammed A. Khalili

Abstract:

We are proposing a simple watermarking method based on visual cryptography. The method is based on selection of specific pixels from the original image instead of random selection of pixels as per Hwang [1] paper. Verification information is generated which will be used to verify the ownership of the image without the need to embed the watermark pattern into the original digital data. Experimental results show the proposed method can recover the watermark pattern from the marked data even if some changes are made to the original digital data.

Keywords: Watermarking, visual cryptography, visualthreshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
6952 Estimation of Missing or Incomplete Data in Road Performance Measurement Systems

Authors: Kristjan Kuhi, Kati K. Kaare, Ott Koppel

Abstract:

Modern management in most fields is performance based; both planning and implementation of maintenance and operational activities are driven by appropriately defined performance indicators. Continuous real-time data collection for management is becoming feasible due to technological advancements. Outdated and insufficient input data may result in incorrect decisions. When using deterministic models the uncertainty of the object state is not visible thus applying the deterministic models are more likely to give false diagnosis. Constructing structured probabilistic models of the performance indicators taking into consideration the surrounding indicator environment enables to estimate the trustworthiness of the indicator values. It also assists to fill gaps in data to improve the quality of the performance analysis and management decisions. In this paper authors discuss the application of probabilistic graphical models in the road performance measurement and propose a high-level conceptual model that enables analyzing and predicting more precisely future pavement deterioration based on road utilization.

Keywords: Probabilistic graphical models, performance indicators, road performance management, data collection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
6951 Integration of Seismic and Seismological Data Interpretation for Subsurface Structure Identification

Authors: Iftikhar Ahmed Satti, Wan Ismail Wan Yusoff

Abstract:

The structural interpretation of a part of eastern Potwar (Missa Keswal) has been carried out with available seismological, seismic and well data. Seismological data contains both the source parameters and fault plane solution (FPS) parameters and seismic data contains ten seismic lines that were re-interpreted by using well data. Structural interpretation depicts two broad types of fault sets namely, thrust and back thrust faults. These faults together give rise to pop up structures in the study area and also responsible for many structural traps and seismicity. Seismic interpretation includes time and depth contour maps of Chorgali Formation while seismological interpretation includes focal mechanism solution (FMS), depth, frequency, magnitude bar graphs and renewal of Seismotectonic map. The Focal Mechanism Solutions (FMS) that surrounds the study area are correlated with the different geological and structural maps of the area for the determination of the nature of subsurface faults. Results of structural interpretation from both seismic and seismological data show good correlation. It is hoped that the present work will help in better understanding of the variations in the subsurface structure and can be a useful tool for earthquake prediction, planning of oil field and reservoir monitoring.

Keywords: Focal mechanism solution (FMS), Fault plane solution (FPS), Reservoir monitoring, earthquake prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
6950 Blood Elements Activation in Hemodialysis – Animal Model Studies

Authors: Karolina Grzeszczuk-Kuć, Jolanta Bujok, Tomasz Walski, Małgorzata Komorowska

Abstract:

Haemodialysis (HD) is a procedure saving patient lives around the world, unfortunately it brings numerous complications. Oxidative stress is one of the major factors which lead to erythrocytes destruction during extracorporeal circulation. Repeated HD procedures destroy blood elements and the organism is not able to keep up with their production. 30 HD procedures on healthy sheep were performed to evaluate effects of such treatment. Oxidative stress study was performed together with an analysis of basic blood parameters and empirical assessment of dialyzer condition after the procedure. A reversible decline in absolute leukocyte count, during first 30 min of HD, was observed. Blood clots were formed in the area of the blood inlet and outlet of the dialyzer. Our results are consistent with outcomes presented throughout the literature specifically with respect to the effects observed in humans and will provide a basis to evaluate methods for blood protection during haemodialysis.

Keywords: Animal model, blood components, haemodialysis, leukocytes, oxidative stress, sheep.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
6949 Detailed Mapping of Pyroclastic Flow Deposits by SAR Data Processing for an Active Volcano in the Torrid Zone

Authors: Asep Saepuloh, Katsuaki Koike

Abstract:

Field mapping activity for an active volcano mainly in the Torrid Zone is usually hampered by several problems such as steep terrain and bad atmosphere conditions. In this paper we present a simple solution for such problem by a combination Synthetic Aperture Radar (SAR) and geostatistical methods. By this combination, we could reduce the speckle effect from the SAR data and then estimate roughness distribution of the pyroclastic flow deposits. The main purpose of this study is to detect spatial distribution of new pyroclastic flow deposits termed as P-zone accurately using the β°data from two RADARSAT-1 SAR level-0 data. Single scene of Hyperion data and field observation were used for cross-validation of the SAR results. Mt. Merapi in central Java, Indonesia, was chosen as a study site and the eruptions in May-June 2006 were examined. The P-zones were found in the western and southern flanks. The area size and the longest flow distance were calculated as 2.3 km2 and 6.8 km, respectively. The grain size variation of the P-zone was mapped in detail from fine to coarse deposits regarding the C-band wavelength of 5.6 cm.

Keywords: Geostatistical Method, Mt. Merapi, Pyroclastic, RADARSAT-1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
6948 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke

Abstract:

The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
6947 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: Connected-car, data modeling, route planning, navigation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
6946 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network

Authors: Jing Zhou, Steven Su, Aihuang Guo

Abstract:

COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.

Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3079
6945 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules

Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.

Keywords: Data mining, association rule, fuzzy frequent patterngrowth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
6944 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
6943 Investigating Crime Hotspot Places and their Implication to Urban Environmental Design: A Geographic Visualization and Data Mining Approach

Authors: Donna R. Tabangin, Jacqueline C. Flores, Nelson F. Emperador

Abstract:

Information is power. Geographical information is an emerging science that is advancing the development of knowledge to further help in the understanding of the relationship of “place" with other disciplines such as crime. The researchers used crime data for the years 2004 to 2007 from the Baguio City Police Office to determine the incidence and actual locations of crime hotspots. Combined qualitative and quantitative research methodology was employed through extensive fieldwork and observation, geographic visualization with Geographic Information Systems (GIS) and Global Positioning Systems (GPS), and data mining. The paper discusses emerging geographic visualization and data mining tools and methodologies that can be used to generate baseline data for environmental initiatives such as urban renewal and rejuvenation. The study was able to demonstrate that crime hotspots can be computed and were seen to be occurring to some select places in the Central Business District (CBD) of Baguio City. It was observed that some characteristics of the hotspot places- physical design and milieu may play an important role in creating opportunities for crime. A list of these environmental attributes was generated. This derived information may be used to guide the design or redesign of the urban environment of the City to be able to reduce crime and at the same time improve it physically.

Keywords: Crime mapping, data mining, environmental design, geographic visualization, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2629
6942 Legal Basis for Water Resources Management in Brazil: Case Study of the Rio Grande Basin

Authors: Janaína F. Guidolini, Jean P. H. B. Ometto, Angélica Giarolla, Peter M. Toledo, Carlos A. Valera

Abstract:

The water crisis, a major problem of the 21st century, occurs mainly due to poor management. The central issue that should govern the management is the integration of the various aspects that interfere with the use of water resources and their protection, supported by legal basis. A watershed is a unit of water interacting with the physical, biotic, social, economic and cultural variables. The Brazilian law recognized river basin as the territorial management unit. Based on the diagnosis of the current situation of the water resources of the Rio Grande Basin, a discussion informed in the Brazilian legal basis was made to propose measures to fight or mitigate damages and environmental degradation in the Basin. To manage water resources more efficiently, conserve water and optimize their multiple uses, the integration of acquired scientific knowledge and management is essential. Moreover, it is necessary to monitor compliance with environmental legislation.

Keywords: Conservation of soil and water, river basin, sustainability, water governance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
6941 An Example of Post-Harvest Thermotherapy as a Non-Chemical Method of Pathogen Control on Apples of Topaz Cultivar in Storage

Authors: M. Grabowski, K. Macnar, J. Skrzyński

Abstract:

Huge losses in apple production are caused by pathogens that cannot be seen shortly after harvest. After-harvest thermotherapy treatments can considerably improve control of storage diseases on apples and become an alternative to chemical pesticides. In the years 2010-2012 carried out research in this area. Apples of 'Topaz' cultivar were harvested at optimal maturity time for long storage and subject to water bath treatment at 45, 50, 52, 55°C for 60, 120, 180 and 240 seconds. The control was untreated fruits. After 12 and 24 weeks and during so called simulated trade turnover the fruits were checked for their condition and the originators of diseases were determined by using the standard phytopathological methods. The most common originator of 'Topaz' apple infection during storage were the fungi of genus Gloeosporium. In this paper it was proven that for effective protection of 'Topaz' apples against diseases, thermotherapy by using water treatments at temperature range of 50-52°C is quite sufficient.

Keywords: apple storage diseases, prolonged fruit storage, 'Topaz' apples, thermotherapeutic treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797