Search results for: neural system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9175

Search results for: neural system.

8245 Reliability Evaluation of Distribution System Considering Distributed Generation

Authors: Raju Kaduru, Narsaiah Srinivas Gondlala

Abstract:

This paper presents an analytical approach for evaluating distribution system reliability indices in the presence of distributed generation. Modeling distributed generation and evaluation of distribution system reliability indices using the frequency duration technique. Using model implements and case studies are discussed. Results showed that location of DG and its effect in distribution reliability indices. In this respect, impact of DG on distribution system is investigated using the IEEE Roy Billinton test system (RBTS2) included feeder 1. Therefore, it will help to the distribution system planners in the DG resource placement.

Keywords: Distributed Generation, DG Location, Distribution System, Reliability Indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
8244 TanSSe-L System PIM Manual Transformation to Moodle as a TanSSe-L System Specific PIM

Authors: Kalinga Ellen A., Bagile Burchard B.

Abstract:

Tanzania Secondary Schools e-Learning (TanSSe-L) system is a customized learning management system (LMS) developed to enable ICT support in teaching and learning functions. Methodologies involved in the development of TanSSe-L system are Object oriented system analysis and design with UML to create and model TanSSe-L system database structure in the form of a design class diagram, Model Driven Architecture (MDA) to provide a well defined process in TanSSe-L system development, where MDA conceptual layers were integrated with system development life cycle and customization of open source learning management system which was used during implementation stage to create a timely functional TanSSe-L system. Before customization, a base for customization was prepared. This was the manual transformation from TanSSe-L system platform independent models (PIM) to TanSSe-L system specific PIM. This paper presents how Moodle open source LMS was analyzed and prepared to be the TanSSe-L system specific PIM as applied by MDA.

Keywords: Customization, e-Learning, MDA Transformation, Moodle, Secondary Schools, Tanzania.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
8243 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
8242 Modeling of the Process Parameters using Soft Computing Techniques

Authors: Miodrag T. Manić, Dejan I. Tanikić, Miloš S. Stojković, Dalibor M. ðenadić

Abstract:

The design of technological procedures for manufacturing certain products demands the definition and optimization of technological process parameters. Their determination depends on the model of the process itself and its complexity. Certain processes do not have an adequate mathematical model, thus they are modeled using heuristic methods. First part of this paper presents a state of the art of using soft computing techniques in manufacturing processes from the perspective of applicability in modern CAx systems. Methods of artificial intelligence which can be used for this purpose are analyzed. The second part of this paper shows some of the developed models of certain processes, as well as their applicability in the actual calculation of parameters of some technological processes within the design system from the viewpoint of productivity.

Keywords: fuzzy logic, manufacturing, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
8241 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: Hierarchical process control, knowledge discovery from databases, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
8240 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.

Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
8239 A Study of Geographic Information System Combining with GPS and 3G for Parking Guidance and Information System

Authors: Yu-Chi Shiue, Jyong Lin, Shih-Chang Chen

Abstract:

With the increase of economic behavior and the upgrade of living standar, the ratio for people in Taiwan who own automobiles and motorcycles have recently increased with multiples. Therefore, parking issues will be a big challenge to facilitate traffic network and ensure urban life quality. The Parking Guidance and Information System is one of important systems for Advanced Traveler Information Services (ATIS). This research proposes a parking guidance and information system which integrates GPS and 3G network for a map on the Geographic Information System to solution inadequate of roadside information kanban. The system proposed in this study mainly includes Parking Host, Parking Guidance and Information Server, Geographic Map and Information System as well as Parking Guidance and Information Browser. The study results show this system can increase driver-s efficiency to find parking space and efficiently enhance parking convenience in comparison with roadside kanban system.

Keywords: Geographic Information System, 3G, GPS, parkinginformation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
8238 Internet of Things Based Process Model for Smart Parking System

Authors: Amjaad Alsalamah, Liyakathunsia Syed

Abstract:

Transportation is an essential need for many people to go to their work, school, and home. In particular, the main common method inside many cities is to drive the car. Driving a car can be an easy job to reach the destination and load all stuff in a reasonable time. However, deciding to find a parking lot for a car can take a long time using the traditional system that can issue a paper ticket for each customer. The old system cannot guarantee a parking lot for all customers. Also, payment methods are not always available, and many customers struggled to find their car among a numerous number of cars. As a result, this research focuses on providing an online smart parking system in order to save time and budget. This system provides a flexible management system for both parking owner and customers by receiving all request via the online system and it gets an accurate result for all available parking and its location.

Keywords: Smart parking system, IoT, tracking system, process model, cost, time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360
8237 Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO

Authors: M. H. Moradi, S. M. Moosavi, A. R. Reisi

Abstract:

The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).

Keywords: Power system stabilizer, C-Catfish PSO, ITAE objective function, Power system control, Multi-machine power system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
8236 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen

Abstract:

In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
8235 Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems

Authors: Surya Prakash, Sunil Kumar Sinha

Abstract:

This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consists of thermal reheat power plant whereas area-3 and area-4 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent controller like ANFIS, ANN and Fuzzy controllers and conventional PI and PID control approaches. To enhance the performance of intelligent and conventional controller sliding surface is included. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of ANFIS, ANN, Fuzzy, PI and PID based approaches shows the superiority of proposed ANFIS over ANN & fuzzy, PI and PID controller for 1% step load variation.

Keywords: Load Frequency Control (LFC), ANFIS, ANN & Fuzzy, PI, PID Controllers, Area Control Error (ACE), Tie-line, MATLAB / SIMULINK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3660
8234 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: Acute hepatitis, Medical resource cost, Artificial neural network, Support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
8233 A Study of the Lighting Control System for a Daylit Office

Authors: Chih-Jian Hu, Chung-Chih Cheng, Hsiao-Yuan Wu., Nien-Tzu Chao

Abstract:

Increasing user comfort and reducing operation costs have always been primary objectives of lighting control strategies in a building. This paper proposes an architecture of the lighting control system for a daylit office. The system consists of the lighting controller, A/D & D/A converter, dimmable LED lights, and the lighting management software. Verification tests are conducted using the proposed system specialized for the interior lighting of a open-plan office. The results showed the proposed architecture of the lighting system would improve the overall system reliability, lower the system cost, and provide ease of installation and maintenance.

Keywords: control, dimming, LED, lighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
8232 Application of Extreme Learning Machine Method for Time Series Analysis

Authors: Rampal Singh, S. Balasundaram

Abstract:

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Keywords: Chaotic time series, Extreme learning machine, Generalization performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3520
8231 The Role of Planning and Memory in the Navigational Ability

Authors: Greeshma Sharma, Sushil Chandra, Vijander Singh, Alok Prakash Mittal

Abstract:

Navigational ability requires spatial representation, planning, and memory. It covers three interdependent domains, i.e. cognitive and perceptual factors, neural information processing, and variability in brain microstructure. Many attempts have been made to see the role of spatial representation in the navigational ability, and the individual differences have been identified in the neural substrate. But, there is also a need to address the influence of planning, memory on navigational ability. The present study aims to evaluate relations of aforementioned factors in the navigational ability. Total 30 participants volunteered in the study of a virtual shopping complex and subsequently were classified into good and bad navigators based on their performances. The result showed that planning ability was the most correlated factor for the navigational ability and also the discriminating factor between the good and bad navigators. There was also found the correlations between spatial memory recall and navigational ability. However, non-verbal episodic memory and spatial memory recall were also found to be correlated with the learning variable. This study attempts to identify differences between people with more and less navigational ability on the basis of planning and memory.

Keywords: Memory, planning navigational ability, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
8230 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm

Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli

Abstract:

In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).

Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
8229 Urdu Nastaleeq Optical Character Recognition

Authors: Zaheer Ahmad, Jehanzeb Khan Orakzai, Inam Shamsher, Awais Adnan

Abstract:

This paper discusses the Urdu script characteristics, Urdu Nastaleeq and a simple but a novel and robust technique to recognize the printed Urdu script without a lexicon. Urdu being a family of Arabic script is cursive and complex script in its nature, the main complexity of Urdu compound/connected text is not its connections but the forms/shapes the characters change when it is placed at initial, middle or at the end of a word. The characters recognition technique presented here is using the inherited complexity of Urdu script to solve the problem. A word is scanned and analyzed for the level of its complexity, the point where the level of complexity changes is marked for a character, segmented and feeded to Neural Networks. A prototype of the system has been tested on Urdu text and currently achieves 93.4% accuracy on the average.

Keywords: Cursive Script, OCR, Urdu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
8228 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability

Authors: Pradeep Kumar, Abdul Wahid

Abstract:

Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.

Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
8227 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
8226 Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
8225 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines

Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé

Abstract:

The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).

Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
8224 An HCI Template for Distributed Applications

Authors: Xizhi Li

Abstract:

Both software applications and their development environment are becoming more and more distributed. This trend impacts not only the way software computes, but also how it looks. This article proposes a Human Computer Interface (HCI) template from three representative applications we have developed. These applications include a Multi-Agent System based software, a 3D Internet computer game with distributed game world logic, and a programming language environment used in constructing distributed neural network and its visualizations. HCI concepts that are common to these applications are described in abstract terms in the template. These include off-line presentation of global entities, entities inside a hierarchical namespace, communication and languages, reconfiguration of entity references in a graph, impersonation and access right, etc. We believe the metaphor that underlies an HCI concept as well as the relationships between a bunch of HCI concepts are crucial to the design of software systems and vice versa.

Keywords: HCI, MAS, computer game, programming language

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
8223 Efficient Numerical Model for Studying Bridge Pier Collapse in Floods

Authors: Thanut Kallaka, Ching-Jong Wang

Abstract:

High level and high velocity flood flows are potentially harmful to bridge piers as evidenced in many toppled piers, and among them the single-column piers were considered as the most vulnerable. The flood flow characteristic parameters including drag coefficient, scouring and vortex shedding are built into a pier-flood interaction model to investigate structural safety against flood hazards considering the effects of local scouring, hydrodynamic forces, and vortex induced resonance vibrations. By extracting the pier-flood simulation results embedded in a neural networks code, two cases of pier toppling occurred in typhoon days were reexamined: (1) a bridge overcome by flash flood near a mountain side; (2) a bridge washed off in flood across a wide channel near the estuary. The modeling procedures and simulations are capable of identifying the probable causes for the tumbled bridge piers during heavy floods, which include the excessive pier bending moments and resonance in structural vibrations.

Keywords: Bridge piers, Neural networks, Scour depth, Structural safety, Vortex shedding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
8222 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.

Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664
8221 Mathematical Model of the Respiratory System – Comparison of the Total Lung Impedance in the Adult and Neonatal Lung

Authors: M. Rozanek, K. Roubik

Abstract:

A mathematical model of the respiratory system is introduced in this study. Geometrical dimensions of the respiratory system were used to compute the acoustic properties of the respiratory system using the electro-acoustic analogy. The effect of the geometrical proportions of the respiratory system is observed in the paper.

Keywords: Electro-acoustic analogy, total lung impedance, mechanical parameters, respiratory system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
8220 Determination of Sensitive Transmission Lines Due to the Effect of Protection System Hidden Failure in a Critical System Cascading Collapse

Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan

Abstract:

Protection system hidden failures have been identified as one of the main causes of system cascading collapse resulting to power system instability. In this paper, a systematic approach is presented in order to identify the probability of a system cascading collapse by taking into consideration the effect of protection system hidden failure. This includes the accurate calculation of the probability of hidden failure as it will provide significant impinge on the findings of the probability of system cascading collapse. The probability of a system cascading collapse is then used to identify the initial tripping of sensitive transmission lines which will contribute to a critical system cascading collapse. Based on the results obtained from this study, it is important to decide on the accurate value of the hidden failure probability as it will affect the probability of a system cascading collapse.

Keywords: Critical system cascading collapse, hidden failure, probability of cascading collapse, sensitive transmission lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
8219 Pineapple Maturity Recognition Using RGB Extraction

Authors: J. I. Asnor, S. Rosnah, Z. W. H. Wan, H. A. B. Badrul

Abstract:

Pineapples can be classified using an index with seven levels of maturity based on the green and yellow color of the skin. As the pineapple ripens, the skin will change from pale green to a golden or yellowish color. The issues that occur in agriculture nowadays are to do with farmers being unable to distinguish between the indexes of pineapple maturity correctly and effectively. There are several reasons for why farmers cannot properly follow the guideline provide by Federal Agriculture Marketing Authority (FAMA) and one of reason is that due to manual inspection done by experts, there are no specific and universal guidelines to be adopted by farmers due to the different points of view of the experts when sorting the pineapples based on their knowledge and experience. Therefore, an automatic system will help farmers to identify pineapple maturity effectively and will become a universal indicator to farmers.

Keywords: Artificial Neural Network, Image Processing, Index of Maturity, Pineapple

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3444
8218 A Novel Prostate Segmentation Algorithm in TRUS Images

Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta

Abstract:

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Keywords: Prostate segmentation, stick filter, neural network, active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
8217 Analysis of Long-Term File System Activities on Cluster Systems

Authors: Hyeyoung Cho, Sungho Kim, Sik Lee

Abstract:

I/O workload is a critical and important factor to analyze I/O pattern and to maximize file system performance. However to measure I/O workload on running distributed parallel file system is non-trivial due to collection overhead and large volume of data. In this paper, we measured and analyzed file system activities on two large-scale cluster systems which had TFlops level high performance computation resources. By comparing file system activities of 2009 with those of 2006, we analyzed the change of I/O workloads by the development of system performance and high-speed network technology.

Keywords: I/O workload, Lustre, GPFS, Cluster File System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
8216 New Coordinate System for Countries with Big Territories

Authors: Mohammed Sabri Ali Akresh

Abstract:

The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.

Keywords: Harmonic equations, coordinate system, projections, algorithms and parallels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846