Search results for: Shape Memory Alloy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1469

Search results for: Shape Memory Alloy

539 CFD Effect of the Tidal Grating in Opposite Directions

Authors: N. M. Thao, I. Dolguntseva, M. Leijon

Abstract:

Flow blockages referring to the increase in flow are being considered as a vital equipment for marine current energy conversion. However, the shape of these devices will result in extracted energy under the operation. The present work investigates the effect of two configurations of a grating, convergent and divergent that located upstream, to the water flow velocity. The flow characteristics are studied by Computational Fluid Dynamic simulation by using the ANSYS Fluent solver for these specified arrangements of the grating. The results indicate that distinguished characteristics of flow velocity between “convergent” and “divergent” grating placements is up to 10% in confined conditions. Furthermore, the velocity in case of convergent grating is higher than that of divergent grating.

Keywords: Marine current energy, marine current energy converter, turbine grating, RANS simulation, water flow velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
538 In-situ Quasistatic Compression and Microstructural Characterization of Aluminum Foams of Different Cell Topology

Authors: M. A. Islam, P. J. Hazell, J. P. Escobedo, M. Saadatfar

Abstract:

Metallic foams have good potential for lightweight structures for impact and blast mitigation. Therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximise energy absorption. In this paper, quasistatic compression and microstructural characterization of closed-cell aluminium foams of different pore size and cell distributions have been carried out. We present results for two different aluminium metal foams of density 0.49-0.51 g/cc and 0.31- 0.34 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behaviour has been investigated using optical microscope and computed tomography (micro-CT) analysis. It is shown that the deformation is not uniform in the structure and collapse begins at the weakest point.

Keywords: Metal foams, micro-CT, cell topology, quasistatic compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774
537 A Talking Head System for Korean Text

Authors: Sang-Wan Kim, Hoon Lee, Kyung-Ho Choi, Soon-Young Park

Abstract:

A talking head system (THS) is presented to animate the face of a speaking 3D avatar in such a way that it realistically pronounces the given Korean text. The proposed system consists of SAPI compliant text-to-speech (TTS) engine and MPEG-4 compliant face animation generator. The input to the THS is a unicode text that is to be spoken with synchronized lip shape. The TTS engine generates a phoneme sequence with their duration and audio data. The TTS applies the coarticulation rules to the phoneme sequence and sends a mouth animation sequence to the face modeler. The proposed THS can make more natural lip sync and facial expression by using the face animation generator than those using the conventional visemes only. The experimental results show that our system has great potential for the implementation of talking head for Korean text.

Keywords: Talking head, Lip sync, TTS, MPEG4.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
536 Defining of the Shape of the Spine Using Moiré Method in Case of Patients with Scheuermann Disease

Authors: Petra Balla, Gabor Manhertz, Akos Antal

Abstract:

Nowadays spinal deformities are very frequent problems among teenagers. Scheuermann disease is a one dimensional deformity of the spine, but it has prevalence over 11% of the children. A traditional technology, the moiré method was used by us for screening and diagnosing this type of spinal deformity. A LabVIEW program has been developed to evaluate the moiré pictures of patients with Scheuermann disease. Two different solutions were tested in this computer program, the extreme and the inflexion point calculation methods. Effects using these methods were compared and according to the results both solutions seemed to be appropriate. Statistical results showed better efficiency in case of the extreme search method where the average difference was only 6,09⁰.

Keywords: Spinal deformity, picture evaluation, moiré method, Scheuermann disease, curve detection, moiré topography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3546
535 The Temperature Range in the Simulation of Residual Stress and Hot Tearing During Investment Casting

Authors: Saeid Norouzi, Ali Shams, Hassan Farhangi, Alireza Darvish

Abstract:

Hot tear cracking and residual stress are two different consequences of thermal stress both of which can be considered as casting problem. The purpose of the present study is simulation of the effect of casting shape characteristic on hot tearing and residual stress. This study shows that the temperature range for simulation of hot tearing and residual stress are different. In this study, in order to study the development of thermal stress and to predict the hot tearing and residual stress of shaped casting, MAGMASOFT simulation program was used. The strategy of this research was the prediction of hot tear location using pinpointing hot spot and thermal stress concentration zones. The results shows that existing of stress concentration zone increases the hot tearing probability and consequently reduces the amount of remaining residual stress in casting parts.

Keywords: Hot tearing, residual stress, simulation, investment casting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
534 A new Adaptive Approach for Histogram based Mouth Segmentation

Authors: Axel Panning, Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.

Keywords: Feature extraction, Segmentation, Image processing, Application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
533 Removal of Chromium from Aqueous Solution using Synthesized Polyaniline in Acetonitrile

Authors: Majid Riahi Samani, Seyed Mehdi Borghei

Abstract:

Absorptive characteristics of polyaniline synthesized in mixture of water and acetonitrile in 50/50 volume ratio was studied. Synthesized polyaniline in powder shape is used as an adsorbent to remove toxic hexavalent chromium from aqueous solutions. Experiments were conducted in batch mode with different variables such as agitation time, solution pH and initial concentration of hexavalent chromium. Removal mechanism is the combination of surface adsorption and reduction. The equilibrium time for removal of Cr(T) and Cr(VI) was about 2 and 10 minutes respectively. The optimum pH for total chromium removal occurred at pH 7 and maximum hexavalent chromium removal took place under acidic condition at pH 3. Investigating the isothermal characteristics showed that the equilibrium adsorption data fitted both Freundlich-s and Langmuir-s isotherms. The maximum adsorption of chromium was calculated 36.1 mg/g for polyaniline

Keywords: Polyaniline, Chromium, acetonitrile, Adsorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
532 A Numerical Simulation of the Indoor Air Flow

Authors: Karel Frana, Jianshun S. Zhang, Milos Muller

Abstract:

The indoor airflow with a mixed natural/forced convection was numerically calculated using the laminar and turbulent approach. The Boussinesq approximation was considered for a simplification of the mathematical model and calculations. The results obtained, such as mean velocity fields, were successfully compared with experimental PIV flow visualizations. The effect of the distance between the cooled wall and the heat exchanger on the temperature and velocity distributions was calculated. In a room with a simple shape, the computational code OpenFOAM demonstrated an ability to numerically predict flow patterns. Furthermore, numerical techniques, boundary type conditions and the computational grid quality were examined. Calculations using the turbulence model k-omega had a significant effect on the results influencing temperature and velocity distributions.

Keywords: natural and forced convections, numerical simulations, indoor airflows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
531 CFD Simulation the Thermal-Hydraulic Characteristic within Fuel Rod Bundle near Grid Spacers

Authors: David Lávicka

Abstract:

This paper looks into detailed investigation of thermal-hydraulic characteristics of the flow field in a fuel rod model, especially near the spacer. The area investigate represents a source of information on the velocity flow field, vortex, and on the amount of heat transfer into the coolant all of which are critical for the design and improvement of the fuel rod in nuclear power plants. The flow field investigation uses three-dimensional Computational Fluid Dynamics (CFD) with the Reynolds stresses turbulence model (RSM). The fuel rod model incorporates a vertical annular channel where three different shapes of spacers are used; each spacer shape is addressed individually. These spacers are mutually compared in consideration of heat transfer capabilities between the coolant and the fuel rod model. The results are complemented with the calculated heat transfer coefficient in the location of the spacer and along the stainless-steel pipe.

Keywords: CFD, fuel rod model, heat transfer, spacer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
530 On Pattern-Based Programming towards the Discovery of Frequent Patterns

Authors: Kittisak Kerdprasop, Nittaya Kerdprasop

Abstract:

The problem of frequent pattern discovery is defined as the process of searching for patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a database. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages. Such paradigm is inefficient when set of patterns is large and the frequent pattern is long. We suggest a high-level declarative style of programming apply to the problem of frequent pattern discovery. We consider two languages: Haskell and Prolog. Our intuitive idea is that the problem of finding frequent patterns should be efficiently and concisely implemented via a declarative paradigm since pattern matching is a fundamental feature supported by most functional languages and Prolog. Our frequent pattern mining implementation using the Haskell and Prolog languages confirms our hypothesis about conciseness of the program. The comparative performance studies on line-of-code, speed and memory usage of declarative versus imperative programming have been reported in the paper.

Keywords: Frequent pattern mining, functional programming, pattern matching, logic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
529 Innovation and Analysis of Vibrating Fork Level Switch

Authors: Kuen-Ming Shu, Cheng-Yu Chen

Abstract:

A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.

Keywords: Vibrating fork, piezoelectric ceramics, sound wave, ANSYS, Taguchi method, modal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
528 Action Functional of the Electomagnetic Field: Effect of Gravitation

Authors: Arti Vaish, Harish Parthasarathy

Abstract:

The scalar wave equation for a potential in a curved space time, i.e., the Laplace-Beltrami equation has been studied in this work. An action principle is used to derive a finite element algorithm for determining the modes of propagation inside a waveguide of arbitrary shape. Generalizing this idea, the Maxwell theory in a curved space time determines a set of linear partial differential equations for the four electromagnetic potentials given by the metric of space-time. Similar to the Einstein-s formulation of the field equations of gravitation, these equations are also derived from an action principle. In this paper, the expressions for the action functional of the electromagnetic field have been derived in the presence of gravitational field.

Keywords: General theory of relativity, electromagnetism, metric tensor, Maxwells equations, test functions, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
527 Interference Reduction Technique in Multistage Multiuser Detector for DS-CDMA System

Authors: Lokesh Tharani, R.P.Yadav

Abstract:

This paper presents the results related to the interference reduction technique in multistage multiuser detector for asynchronous DS-CDMA system. To meet the real-time requirements for asynchronous multiuser detection, a bit streaming, cascade architecture is used. An asynchronous multiuser detection involves block-based computations and matrix inversions. The paper covers iterative-based suboptimal schemes that have been studied to decrease the computational complexity, eliminate the need for matrix inversions, decreases the execution time, reduces the memory requirements and uses joint estimation and detection process that gives better performance than the independent parameter estimation method. The stages of the iteration use cascaded and bits processed in a streaming fashion. The simulation has been carried out for asynchronous DS-CDMA system by varying one parameter, i.e., number of users. The simulation result exhibits that system gives optimum bit error rate (BER) at 3rd stage for 15-users.

Keywords: Multi-user detection (MUD), multiple accessinterference (MAI), near-far effect, decision feedback detector, successive interference cancellation detector (SIC) and parallelinterference cancellation (PIC) detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
526 A Signal Driven Adaptive Resolution Short-Time Fourier Transform

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

The frequency contents of the non-stationary signals vary with time. For proper characterization of such signals, a smart time-frequency representation is necessary. Classically, the STFT (short-time Fourier transform) is employed for this purpose. Its limitation is the fixed timefrequency resolution. To overcome this drawback an enhanced STFT version is devised. It is based on the signal driven sampling scheme, which is named as the cross-level sampling. It can adapt the sampling frequency and the window function (length plus shape) by following the input signal local variations. This adaptation results into the proposed technique appealing features, which are the adaptive time-frequency resolution and the computational efficiency.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
525 A Single-Phase Register File with Complementary Pass-Transistor Adiabatic Logic

Authors: Jianping Hu, Xiaolei Sheng

Abstract:

This paper introduces an adiabatic register file based on two-phase CPAL (Complementary Pass-Transistor Adiabatic Logic circuits) with power-gating scheme, which can operate on a single-phase power clock. A 32×32 single-phase adiabatic register file with power-gating scheme has been implemented with TSMC 0.18μm CMOS technology. All the circuits except for the storage cells employ two-phase CPAL circuits, and the storage cell is based on the conventional memory one. The two-phase non-overlap power-clock generator with power-gating scheme is used to supply the proposed adiabatic register file. Full-custom layouts are drawn. The energy and functional simulations have been performed using the net-list extracted from their layouts. Compared with the traditional static CMOS register file, HSPICE simulations show that the proposed adiabatic register file can work very well, and it attains about 73% energy savings at 100 MHz.

Keywords: Low power, Register file, Complementarypass-transistor logic, Adiabatic logic, Single-phase power clock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
524 An Enhanced Distributed System to improve theTime Complexity of Binary Indexed Trees

Authors: Ahmed M. Elhabashy, A. Baes Mohamed, Abou El Nasr Mohamad

Abstract:

Distributed Computing Systems are usually considered the most suitable model for practical solutions of many parallel algorithms. In this paper an enhanced distributed system is presented to improve the time complexity of Binary Indexed Trees (BIT). The proposed system uses multi-uniform processors with identical architectures and a specially designed distributed memory system. The analysis of this system has shown that it has reduced the time complexity of the read query to O(Log(Log(N))), and the update query to constant complexity, while the naive solution has a time complexity of O(Log(N)) for both queries. The system was implemented and simulated using VHDL and Verilog Hardware Description Languages, with xilinx ISE 10.1, as the development environment and ModelSim 6.1c, similarly as the simulation tool. The simulation has shown that the overhead resulting by the wiring and communication between the system fragments could be fairly neglected, which makes it applicable to practically reach the maximum speed up offered by the proposed model.

Keywords: Binary Index Tree (BIT), Least Significant Bit (LSB), Parallel Adder (PA), Very High Speed Integrated Circuits HardwareDescription Language (VHDL), Distributed Parallel Computing System(DPCS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
523 Measuring the Cognitive Abilities of Teenage Basketball Players in Singapore

Authors: Stella Y. Ng, John B. Peacock, Kay Chuan Tan

Abstract:

This paper discusses the use of a computerized test to measure the decision-making abilities of teenage basketball players in Singapore. There are five sections in this test – Competitive state anxiety inventory-2 (CSAI-2) questionnaire (measures player’s cognitive anxiety, somatic anxiety and self-confidence), Corsi block-tapping task (measures player’s short-term spatial memory), situation awareness global assessment technique (SAGAT) (measures players’ situation awareness in a basketball game), multiple choice questions on basketball knowledge (measures players’ knowledge of basketball rules and concepts), and lastly, a learning test that requires participants to recall and recognize basketball set plays (measures player’s ability to learn and recognize set plays). A total of 25 basketball players, aged 14 to 16 years old, from three secondary school teams participated in this experiment. The results that these basketball players obtained from this cognitive test were then used to compare with their physical fitness and basketball performance.

Keywords: Basketball, cognitive abilities, computerized test, decision-making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
522 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections

Authors: N. Zhang, J. S. Kuang, S. Mogili

Abstract:

To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.

Keywords: Large-scale tests, RC beam-column knee joints, seismic performance, shear strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
521 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim

Abstract:

This paper has been investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

Keywords: Actuator, performance, piezoelectric, unimorph.Actuator, performance, piezoelectric, unimorph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
520 Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC) within Operational Research (OR) with Sustainability and Phenomenology

Authors: Al-Salamin Hussain, Elias O. Tembe

Abstract:

Supply chain (SC) is an operational research (OR) approach and technique which acts as catalyst within central nervous system of business today. Without SC, any type of business is at doldrums, hence entropy. SC is the lifeblood of business today because it is the pivotal hub which provides imperative competitive advantage. The paper present a conceptual framework dubbed as Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC).The term Homomorphic is derived from abstract algebraic mathematical term homomorphism (same shape) which also embeds the following mathematical application sets: monomorphisms, isomorphism, automorphisms, and endomorphism. The HCFESC is intertwined and integrated with wide and broad sets of elements.

Keywords: Automorphisms, Homomorphism, Monomorphisms, Supply Chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
519 An Experimental Study to Control Single Droplet by Actuating Waveform with Preliminary and Suppressing Vibration

Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

For advancing the experiment system standard of Inkjet printer that is being developed, the actual natural period, fire limitation number in droplet weight measurement and observation distance in droplet velocity measurement was investigated. In another side, the study to control the droplet volume in inkjet printer with negative actuating waveform method is still limited. Therefore, the effect of negative waveform with preliminary and suppressing vibration addition on the droplet formation process, droplet shape, volume and velocity were evaluated. The different voltage and print-head temperature were exerted to obtain the optimum preliminary and suppressing vibration. The mechanism of different phenomenon from each waveform was also discussed.

Keywords: Inkjet printer, DoD, waveform, preliminary and suppressing vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
518 Air Flows along Perforated Metal Plates with the Heat Transfer

Authors: K. Fraňa, S. Simon

Abstract:

The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered.

Keywords: Perforations, convective heat transfers, turbulent flows, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
517 Cyber Security Enhancement via Software-Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Warren Thompson, Zona Kostic

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicates via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: Moving Target Defense, cybersecurity, network security, hopping randomization, software defined network, network security theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
516 A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves

Authors: Hanan Ahmed-Hosni Mahmoud, Nadia Al-Ghreimil

Abstract:

In-place sorting algorithms play an important role in many fields such as very large database systems, data warehouses, data mining, etc. Such algorithms maximize the size of data that can be processed in main memory without input/output operations. In this paper, a novel in-place sorting algorithm is presented. The algorithm comprises two phases; rearranging the input unsorted array in place, resulting segments that are ordered relative to each other but whose elements are yet to be sorted. The first phase requires linear time, while, in the second phase, elements of each segment are sorted inplace in the order of z log (z), where z is the size of the segment, and O(1) auxiliary storage. The algorithm performs, in the worst case, for an array of size n, an O(n log z) element comparisons and O(n log z) element moves. Further, no auxiliary arithmetic operations with indices are required. Besides these theoretical achievements of this algorithm, it is of practical interest, because of its simplicity. Experimental results also show that it outperforms other in-place sorting algorithms. Finally, the analysis of time and space complexity, and required number of moves are presented, along with the auxiliary storage requirements of the proposed algorithm.

Keywords: Auxiliary storage sorting, in-place sorting, sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
515 EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks

Authors: Dilip Kumar S.M, Vijaya Kumar B.P.

Abstract:

The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.

Keywords: Ad hoc networks, admission control, energy-aware routing, Quality-of-Service, future residual energy, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
514 A Low Power SRAM Base on Novel Word-Line Decoding

Authors: Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati, Ali Sarchami

Abstract:

This paper proposes a low power SRAM based on five transistor SRAM cell. Proposed SRAM uses novel word-line decoding such that, during read/write operation, only selected cell connected to bit-line whereas, in conventional SRAM (CV-SRAM), all cells in selected row connected to their bit-lines, which in turn develops differential voltages across all bit-lines, and this makes energy consumption on unselected bit-lines. In proposed SRAM memory array divided into two halves and this causes data-line capacitance to reduce. Also proposed SRAM uses one bit-line and thus has lower bit-line leakage compared to CV-SRAM. Furthermore, the proposed SRAM incurs no area overhead, and has comparable read/write performance versus the CV-SRAM. Simulation results in standard 0.25μm CMOS technology shows in worst case proposed SRAM has 80% smaller dynamic energy consumption in each cycle compared to CV-SRAM. Besides, energy consumption in each cycle of proposed SRAM and CV-SRAM investigated analytically, the results of which are in good agreement with the simulation results.

Keywords: SRAM, write Operation, read Operation, capacitances, dynamic energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
513 The Integration of Patient Health Record Generated from Wearable and Internet of Things Devices into Health Information Exchanges

Authors: Dalvin D. Hill, Hector M. Castro Garcia

Abstract:

A growing number of individuals utilize wearable devices on a daily basis. The usage and functionality of these wearable devices vary from user to user. One popular usage of said devices is to track health-related activities that are typically stored on a device’s memory or uploaded to an account in the cloud; based on the current trend, the data accumulated from the wearable device are stored in a standalone location. In many of these cases, this health related datum is not a factor when considering the holistic view of a user’s health lifestyle or record. This health-related data generated from wearable and Internet of Things (IoT) devices can serve as empirical information to a medical provider, as the standalone data can add value to the holistic health record of a patient. This paper proposes a solution to incorporate the data gathered from these wearable and IoT devices, with that a patient’s Personal Health Record (PHR) stored within the confines of a Health Information Exchange (HIE).

Keywords: Electronic health record, health information exchanges, Internet of Things, personal health records, wearable devices, wearables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
512 Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines

Authors: Zicheng Wang

Abstract:

Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation.

Keywords: Hybrid foundation system, mechanical parameters, plastic soil behaviors, numerical simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
511 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis

Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon

Abstract:

Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.

Keywords: Electromagnetism, defect, finite element method, sensitivity analysis, submarine power cables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
510 Modeling of Material Removal on Machining of Ti-6Al-4V through EDM using Copper Tungsten Electrode and Positive Polarity

Authors: M. M. Rahman, Md. Ashikur Rahman Khan, K. Kadirgama M. M. Noor, Rosli A. Bakar

Abstract:

This paper deals optimized model to investigate the effects of peak current, pulse on time and pulse off time in EDM performance on material removal rate of titanium alloy utilizing copper tungsten as electrode and positive polarity of the electrode. The experiments are carried out on Ti6Al4V. Experiments were conducted by varying the peak current, pulse on time and pulse off time. A mathematical model is developed to correlate the influences of these variables and material removal rate of workpiece. Design of experiments (DOE) method and response surface methodology (RSM) techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance (ANOVA). The obtained results evidence that as the material removal rate increases as peak current and pulse on time increases. The effect of pulse off time on MRR changes with peak ampere. The optimum machining conditions in favor of material removal rate are verified and compared. The optimum machining conditions in favor of material removal rate are estimated and verified with proposed optimized results. It is observed that the developed model is within the limits of the agreeable error (about 4%) when compared to experimental results. This result leads to desirable material removal rate and economical industrial machining to optimize the input parameters.

Keywords: Ti-6Al-4V, material removal rate, copper tungsten, positive polarity, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512