Search results for: Work exchange network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7000

Search results for: Work exchange network

6100 About Analysis and Modelling of the Open Message Switching System

Authors: Saulius Minkevicius, Genadijus Kulvietis

Abstract:

The modern queueing theory is one of the powerful tools for a quantitative and qualitative analysis of communication systems, computer networks, transportation systems, and many other technical systems. The paper is designated to the analysis of queueing systems, arising in the networks theory and communications theory (called open queueing network). The authors of this research in the sphere of queueing theory present the theorem about the law of the iterated logarithm (LIL) for the queue length of a customers in open queueing network and its application to the mathematical model of the open message switching system.

Keywords: Models of information systems, open message switching system, open queueing network, queue length of a customers, heavy traffic, a law of the iterated logarithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
6099 A Study about the Distribution of the Spanning Ratios of Yao Graphs

Authors: Maryam Hsaini, Mostafa Nouri-Baygi

Abstract:

A critical problem in wireless sensor networks is limited battery and memory of nodes. Therefore, each node in the network could maintain only a subset of its neighbors to communicate with. This will increase the battery usage in the network because each packet should take more hops to reach its destination. In order to tackle these problems, spanner graphs are defined. Since each node has a small degree in a spanner graph and the distance in the graph is not much greater than its actual geographical distance, spanner graphs are suitable candidates to be used for the topology of a wireless sensor network. In this paper, we study Yao graphs and their behavior for a randomly selected set of points. We generate several random point sets and compare the properties of their Yao graphs with the complete graph. Based on our data sets, we obtain several charts demonstrating how Yao graphs behave for a set of randomly chosen point set. As the results show, the stretch factor of a Yao graph follows a normal distribution. Furthermore, the stretch factor is in average far less than the worst case stretch factor proved for Yao graphs in previous results. Furthermore, we use Yao graph for a realistic point set and study its stretch factor in real world.

Keywords: Wireless sensor network, spanner graph, Yao Graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
6098 Using Data Mining Methodology to Build the Predictive Model of Gold Passbook Price

Authors: Chien-Hui Yang, Che-Yang Lin, Ya-Chen Hsu

Abstract:

Gold passbook is an investing tool that is especially suitable for investors to do small investment in the solid gold. The gold passbook has the lower risk than other ways investing in gold, but its price is still affected by gold price. However, there are many factors can cause influences on gold price. Therefore, building a model to predict the price of gold passbook can both reduce the risk of investment and increase the benefits. This study investigates the important factors that influence the gold passbook price, and utilize the Group Method of Data Handling (GMDH) to build the predictive model. This method can not only obtain the significant variables but also perform well in prediction. Finally, the significant variables of gold passbook price, which can be predicted by GMDH, are US dollar exchange rate, international petroleum price, unemployment rate, whole sale price index, rediscount rate, foreign exchange reserves, misery index, prosperity coincident index and industrial index.

Keywords: Gold price, Gold passbook price, Group Method ofData Handling (GMDH), Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
6097 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network

Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi

Abstract:

In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
6096 Off-Policy Q-learning Technique for Intrusion Response in Network Security

Authors: Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract:

With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.

Keywords: Intrusion prevention, network security, optimal policy, Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
6095 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao

Abstract:

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.

Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
6094 Cooperative Sensing for Wireless Sensor Networks

Authors: Julien Romieux, Fabio Verdicchio

Abstract:

Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.

Keywords: Cooperative signal processing, power management, signal representation, signal approximation, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
6093 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, there are some deficiencies in their operation, mainly those that use ethanol as a hydrogen source, that require a certain attention. Therefore, this research aimed to develop Nafion® composite membranes, mixing clay minerals, kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and, at the same time, to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, the protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, the Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), Thermal properties, Nanoclay, Differential scanning calorimetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
6092 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks

Authors: Gunasekaran Raja, Ramkumar Jayaraman

Abstract:

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Keywords: Cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
6091 A Novel Technique for Ferroresonance Identification in Distribution Networks

Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor

Abstract:

Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.

Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
6090 A Remote Sensing Approach to Calculate Population Using Roads Network Data in Lebanon

Authors: Kamel Allaw, Jocelyne Adjizian Gerard, Makram Chehayeb, Nada Badaro Saliba

Abstract:

In developing countries, such as Lebanon, the demographic data are hardly available due to the absence of the mechanization of population system. The aim of this study is to evaluate, using only remote sensing data, the correlations between the number of population and the characteristics of roads network (length of primary roads, length of secondary roads, total length of roads, density and percentage of roads and the number of intersections). In order to find the influence of the different factors on the demographic data, we studied the degree of correlation between each factor and the number of population. The results of this study have shown a strong correlation between the number of population and the density of roads and the number of intersections.

Keywords: Population, road network, statistical correlations, remote sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
6089 Protecting the Privacy and Trust of VIP Users on Social Network Sites

Authors: Nidal F. Shilbayeh, Sameh T. Khuffash, Mohammad H. Allymoun, Reem Al-Saidi

Abstract:

There is a real threat on the VIPs personal pages on the Social Network Sites (SNS). The real threats to these pages is violation of privacy and theft of identity through creating fake pages that exploit their names and pictures to attract the victims and spread of lies. In this paper, we propose a new secure architecture that improves the trusting and finds an effective solution to reduce fake pages and possibility of recognizing VIP pages on SNS. The proposed architecture works as a third party that is added to Facebook to provide the trust service to personal pages for VIPs. Through this mechanism, it works to ensure the real identity of the applicant through the electronic authentication of personal information by storing this information within content of their website. As a result, the significance of the proposed architecture is that it secures and provides trust to the VIPs personal pages. Furthermore, it can help to discover fake page, protect the privacy, reduce crimes of personality-theft, and increase the sense of trust and satisfaction by friends and admirers in interacting with SNS.

Keywords: Social Network Sites, Online Social Network, Privacy, Trust, Security and Authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3783
6088 New Malate Dehydrogenase-Glutamate Oxaolacetate Aminotransferase Glutamate Oxaloacetate Aminotransferase Enzyme System from Cereals and its Bioengineering Application

Authors: Zhanar S. Kudiyarova, Zhanar K. Rakhmetova, L. K. Bekbayeva, N. Z. Omirbekova, M. K. Gilmanov

Abstract:

Malate dehydrogenase-glutamate oxaloacetate aminotransferase (MDh-GOAT) enzyme complex (the EC) was isolated and purified from wheat and rise, their some main physicchemical properties were studied. Michael-s constants of the EC MDh-GOAT to malate, glutamate and NAD were investigated. This kinetic results show a high relationship to glutamate. Taking into account important role of the the EC in catabolism of glutamate – the central amino acid of a nitric exchange, there is a sharp necessity of deeper studying of this enzyme complex. Therefore the basic purpose of the work is studying the basic physical and chemical properties of this enzyme complex discovered by us, which would be very important for understanding the mechanisms of reaction catalyzed by the EC.

Keywords: Malate dehydrogenase-glutamate oxaloacetate aminotransferase, enzyme complex, glutamate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
6087 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks

Authors: Manoj Kumar Dutta

Abstract:

Wavelength Division Multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating Fiber Delay Lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.

Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
6086 The Management Accountant’s Roles for Creation of Corporate Shared Value

Authors: Prateep Wajeetongratana

Abstract:

This study investigates the management accountant’s roles that link with the creation of corporate shared value to enable more effective decision-making and improve the information needs of stakeholders. Mixed method is employed to collect using triangulation for credibility. A quantitative approach is employed to conduct a survey of 200 Thai companies providing annual reports in the Stock Exchange of Thailand. The results of the study reveal that environmental and social data incorporated in a corporate social responsibility (CSR) disclosure are based on the indicators of the Global Reporting Initiatives (GRI) at a statistically significant level of 0.01. Environmental and social indicators in CSR are associated with environmental and social data disclosed in the annual report to support stakeholders’ and the public’s interests that are addressed and show that a significant relationship between environmental and social in CSR disclosures and the information in annual reports is statistically significant at the 0.01 level.

Keywords: Corporate social responsibility, creating shared value, management accountant’s roles, stock exchange of Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
6085 Neural Network Implementation Using FPGA: Issues and Application

Authors: A. Muthuramalingam, S. Himavathi, E. Srinivasan

Abstract:

.Hardware realization of a Neural Network (NN), to a large extent depends on the efficient implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a challenging task. This paper discusses the issues involved in implementation of a multi-input neuron with linear/nonlinear excitation functions using FPGA. Implementation method with resource/speed tradeoff is proposed to handle signed decimal numbers. The VHDL coding developed is tested using Xilinx XC V50hq240 Chip. To improve the speed of operation a lookup table method is used. The problems involved in using a lookup table (LUT) for a nonlinear function is discussed. The percentage saving in resource and the improvement in speed with an LUT for a neuron is reported. An attempt is also made to derive a generalized formula for a multi-input neuron that facilitates to estimate approximately the total resource requirement and speed achievable for a given multilayer neural network. This facilitates the designer to choose the FPGA capacity for a given application. Using the proposed method of implementation a neural network based application, namely, a Space vector modulator for a vector-controlled drive is presented

Keywords: FPGA implementation, multi-input neuron, neural network, nn based space vector modulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4432
6084 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.

Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4949
6083 A PI Controller for Enhancing the Transient Stability of Multi Pulse Inverter Based Static Synchronous Series Compensator (SSSC) With Superconducting Magnetic Energy Storage(SMES)

Authors: S. Padma, Dr. R. Lakshmipathi, K. Ramash Kumar, P. Nandagopal

Abstract:

The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the system. Today-s enhancement of technology makes it possible to include new energy storage devices in the electric power system. In addition, with the aid of power electronic devices, it is possible to independently exchange active and reactive power flow with the utility grid. The main purpose of this paper proposes a Proportional – Integral (PI) control based 48 – pulse Inverter based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) used for enhancing the transient stability and regulating power flow in automatic mode. Using a test power system through the dynamic simulation in Matlab/Simulink platform validates the performance of the proposed SSSC with and without SMES system.

Keywords: Flexible AC transmission system (FACTS), PIControl, Superconducting Magnetic Energy Storage (SMES), Static Synchronous Series Compensator (SSSC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
6082 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: Data Estimation, link data, machine learning, road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
6081 Evaluation Rabbit Serum of the Immunodominant Proteins of Mycobacterium Avium Paratuberculosis Extracts

Authors: M. Hashemi, R. Madani, N. Razmi

Abstract:

M. paratuberculosis is a slow growing mycobactin dependent mycobacterial species known to be the causative agent of Johne’s disease in all species of domestic ruminants worldwide. JD is characterized by gradual weight loss; decreased milk production. Excretion of the organism may occur for prolonged periods (1 to 2.5 years) before the onset of clinical disease. In recent years researchers focus on identification a specific antigen of MAP to use in diagnosis test and preparation of effective vaccine. In this paper, for production of polyclonal antibody against proteins of Mycobacterium avium paratuberculosis cell well a rabbit immunization at a certain time period with antigen. After immunization of the animal, rabbit was bleeded for producing enriched serum. Antibodies were purification with ion exchange chromatography. For exact measurement of interaction, western blotting test was used that this study demonstrated sharp bands appears in nitrocellulose paper and specific bands were 50 and 150 KD molecular weight. These were indicating immunodominant proteins.

Keywords: Paratuberculosis, Immunodominant, Western blotting, Ion exchange choromatography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
6080 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree

Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman

Abstract:

In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.

Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
6079 Secure and Efficient Transmission of Aggregated Data for Mobile Wireless Sensor Networks

Authors: A. Krishna Veni, R.Geetha

Abstract:

Wireless Sensor Networks (WSNs) are suitable for many scenarios in the real world. The retrieval of data is made efficient by the data aggregation techniques. Many techniques for the data aggregation are offered and most of the existing schemes are not energy efficient and secure. However, the existing techniques use the traditional clustering approach where there is a delay during the packet transmission since there is no proper scheduling. The presented system uses the Velocity Energy-efficient and Link-aware Cluster-Tree (VELCT) scheme in which there is a Data Collection Tree (DCT) which improves the lifetime of the network. The VELCT scheme and the construction of DCT reduce the delay and traffic. The network lifetime can be increased by avoiding the frequent change in cluster topology. Secure and Efficient Transmission of Aggregated data (SETA) improves the security of the data transmission via the trust value of the nodes prior the aggregation of data. Since SETA considers the data only from the trustworthy nodes for aggregation, it is more secure in transmitting the data thereby improving the accuracy of aggregated data.

Keywords: Aggregation, lifetime, network security, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
6078 Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition

Authors: Redouane Tlemsani, Abdelkader Benyettou

Abstract:

Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.

This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.

Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.

In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.

The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
6077 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry

Authors: Rudi Kurniawan Arief

Abstract:

Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.

Keywords: Press die, metal stamping, quick die change, QDC system, single minute exchange die, manufacturing cost saving, SMED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
6076 Reconfiguration of Deregulated Distribution Network for Minimizing Energy Supply Cost by using Multi-Objective BGA

Authors: H. Kazemi Karegar, S. Jalilzadeh, V. Nabaei, A. Shabani

Abstract:

In this paper, the problem of finding the optimal topological configuration of a deregulated distribution network is considered. The new features of this paper are proposing a multiobjective function and its application on deregulated distribution networks for finding the optimal configuration. The multi-objective function will be defined for minimizing total Energy Supply Costs (ESC) and energy losses subject to load flow constraints. The optimal configuration will be obtained by using Binary Genetic Algorithm (BGA).The proposed method has been tested to analyze a sample and a practical distribution networks.

Keywords: Binary Genetic Algorithm, Deregulated Distribution Network, Minimizing Cost, Reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
6075 Reliability Analysis of Underground Pipelines Using Subset Simulation

Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li

Abstract:

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3559
6074 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models

Authors: A. Shebani, C. Pislaru

Abstract:

The wear measuring and wear modelling are fundamental issues in the industrial field, mainly correlated to the economy and safety. Therefore, there is a need to study the wear measurements and wear estimation. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin is made of steel with a tip, positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument. The Talysurf profilometer was used to measure the pin/disc wear scar depth, digital microscope was used to measure the diameter and width of wear scar, and the alicona was used to measure the pin wear and disc wear. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling. Simulation results were implemented by using the Matlab program. This paper focuses on how the alicona can be used for wear measurements and how the neural network can be used for wear estimation.

Keywords: Wear measuring, Wear modelling, Neural Network, Alicona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4281
6073 Fault Classification of a Doubly FED Induction Machine Using Neural Network

Authors: A. Ourici

Abstract:

Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.

Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
6072 Hybrid Intelligent Intrusion Detection System

Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed

Abstract:

Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.

Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
6071 Corporate Governance in Network Marketing Organizations: The Role of Ethics and CSR

Authors: Venugopal Kummamuru

Abstract:

Corporate Governance (CG) is of utmost importance for running a company ethically. It is essential for the growth and success of the corporation. It is intended to increase the accountability of an organization to the larger context of the business environment. The general principles of CG include and are related to Shareholder recognition, Stakeholder interests, and focus on Corporate Social Responsibility (CSR), Clear Board responsibilities, Ethical behavior, and Business transparency. Network Marketing Organizations (NMOs) focus on marketing through direct-sales using people who are associated with the organization but are not their employees. This paper tries to study the importance of Ethics and CSR in an NMO and suggest a basic guideline for CG in NMO(s). This paper could be used as a basis or starting point for conducting an in-depth research to understand the difference in CG practices between NMO(s) and other organizations and define a standard set of guidelines for CG practice.

Keywords: Corporate governance, corporate responsibility, direct selling, network marketing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086