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Abstract—The modern queueing theory is one of the powerful
tools for a quantitative and qualitative analysis of communication
systems, computer networks, transportation systems, and many other
technical systems. The paper is designated to the analysis of queueing
systems, arising in the networks theory and communications theory
(called open queueing network). The authors of this research in the
sphere of queueing theory present the theorem about the law of the
iterated logarithm (LIL) for the queue length of a customers in open
queueing network and its application to the mathematical model of
the open message switching system.

Keywords—models of information systems, open message switch-
ing system, open queueing network, queue length of a customers,
heavy traffic, a law of the iterated logarithm.

I. PROBLEM FORMULATION

At first the authors continues the research in queueing
theory about LIL in queueing systems and presents theorem
for the queue length of a customers in open queueing network.
We note that papers on the queue length in heavy traffic for
a multiphase queue and open queueing network are sparse.
Kogan et al [6], [7] investigated tandem queues with blocking
in heavy traffic. In Minkevičius [8], functional limit theorems
for the queue length of customers in multiphase queues in
various conditions of heavy traffic are proved. [3] surveyed
some results on the queue length in multiphase queues. [9]
presented laws of the iterated logarithm for a total queue
length of customers and a queue length of customers in
multiphase queues. In [10], functional limit theorems on
complex transient phenomena for a queue length in multiphase
queues are proved. Knessl et al [4], [5] presented diffusion
approximations for a two-node tandem queue with general
renewal process input and independent exponential service
times at each node.

Note that the research of the LIL in more general systems
than the queueing system GI/G/1 or multiphase queueing
systems and open queueing network has just started (see [1]).
In [8], [9], the LIL is proved in heavy traffic for the queue
length of customers, waiting time of a customer, a virtual
waiting time of a customer in a multiphase queueing system.
In [8], [9], [12], also gives the proof of the theorem on the
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LIL under the conditions of heavy traffic for a virtual waiting
time of a customer in the open Jackson network.

In this paper, we investigated an open queueing network
model in heavy traffic. The LIL for the queue length of
customers in an open queueing network has been presented.
The main tool for the analysis of these queueing systems in
heavy traffic is a functional LIL for renewal process (the proof
can be found in [13] and [2]).

The service discipline is ”first come, first served” (FCFS).
We consider open queueing networks with the FCFS service
discipline at each station and general distributions of inter-
arrival and service times. The queueing network we studied
has k single server stations, each of which has an associated
infinite capacity waiting room. Every station has an arrival
stream from outside the network, and the arrival streams
are assumed to be mutually independent renewal processes.
Customers are served in the order of arrival and after service
they are randomly routed to either another station in the
network, or out of the network entirely. Service times and
routing decisions form mutually independent sequences of
independent identically distributed random variables.

The basic components of the queueing network are arrival
processes, service processes, and routing processes. In par-
ticular, there are mutually independent sequences of indepen-
dent identically distributed random variables

{
z
(j)
n , n ≥ 1

}
,{

S
(j)
n , n ≥ 1

}
and

{
Φ(j)

n , n ≥ 1
}

for j = 1, 2, . . . , k; defined

on the probability space. Random variables z
(j)
n and S

(j)
n are

strictly positive, and Φ(j)
n have support in {0, 1, 2, . . . , k}. We

define μj =
(
M
[
S

(j)
n

])−1

> 0, σj = D
(
S

(j)
n

)
> 0

and λj =
(
M
[
z
(j)
n

])−1

> 0, aj = D
(
z
(j)
n

)
> 0, j =

1, 2, ..., k; with all of these terms assumed finite. Denote
pij = P

(
Φ(i)

n = j
)

> 0, j = 1, 2, . . . , k. In the context

of the queueing network, the random variables z
(j)
n function

as interarrival times (from outside the network) at the station
j, while S

(j)
n is the nth service time at the station j, and Φ(j)

n

is a routing indicator for the nth customer served at the station
j. If Φ(i)

n = j (which occurs with probability pij), then the
nth customer served at the station i is routed to the station j.
When Φ(i)

n = 0, the associated customer leaves the network.
The matrix P is called a routing matrix.

First let us define Qj(t) as the queue length of customers
at the jth station of the queueing network in time t; σ̂2

j =

(λj)
3 ·Dz

(j)
n +

k∑
i=1

(μi)
3 ·DS

(i)
n · (pij)

2 + (μj)
3 ·DS

(j)
n > 0,
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β̂j = λj +
k∑

i=1

μi · pij − μj > 0, j = 1, 2, . . . , k.

We assume that the following condition is fulfilled:

λj +
k∑

i=1

μi · pij > μj , j = 1, 2, . . . , k. (1)

Note that this condition quarantees that, with probability
one there exists a queue length of customers and this queue
length of customers is constantly growing.

II. MAIN RESULT

One of the results of the paper is a theorem on the
LIL for the queue length of customers in an open queueing
network.

Theorem 2.1. If conditions (1 ) are fulfilled , then

P

(
lim

t→∞
Qj(t) − β̂j · t

σ̂j · a(t)
= 1 =

)

= P

(
lim

t→∞
Qj(t) − β̂j · t

σ̂j · a(t)
= −1

)
= 1,

j = 1, 2, . . . , k and a(t) =
√

2t ln ln t.
Proof: The proof of theorem is connected with the proof

of Theorem 3.1 from paper Minkevičius et al [11], and we
omit this. The proof of Theorem 2.1 is complete.

III. ON THE MODEL OF THE OPEN MESSAGE SWITCHING
FACILITY

In this part of the paper, we will present an application
of the proved theorem - a mathematical model of open
message switching system.

As noted in the introduction, open network queueing sys-
tems are of special interest both in theory and in practical
applications. Such systems consist of several service nodes,
and each arriving customer is served in the order of arrival
and after service they are randomly routed to either another
station in the network, or out of the network entirely. A
typical example is provided by queueing systems with identical
service. Such systems are very important in applications,
especially to open message switching systems. In fact, in many
comunication systems the transmission times of the customers
do not vary in the delivery process.

So, we investigate a message switching system which con-
sists of k service nodes and in which S

(j)
n = Sn, j =

1, 2, . . . , k (the service process is identical in nodes of the
system).

Also, let us note μ = (M [Sn])−1
> 0, σ̃2

j = (λj)
3·Dz

(j)
n +

(μ)3 · DSn ·
(

1 +
k∑

i=1

(pij)2
)

, βj = λj − μ · (1 −
k∑

i=1

pij) >

0, j = 1, 2, . . . , k.
We assume that the following conditions are fulfilled:

βj > 0, j = 1, 2, . . . , k. (2)

Similarly as in the proof of Theorem 2.1, we present the
following theorem and corollary on the LIL for the queue
length of messages in open message switching systems.

Theorem 3.1. If conditions (2 ) are fulfilled , then

P

(
lim

t→∞
Qj(t) − βj · t

σ̃j · a(t)
= 1
)

=

= P

(
lim

t→∞
Qj(t) − βj · t

σ̃j · a(t)
= −1

)
= 1,

j = 1, 2, . . . , k and a(t) =
√

2t ln ln t.

Corollary 3.1. If conditions (2 ) are fulfilled , then for
fixed ε > 0 there exists t(ε) such that for every t ≥ t(ε),

(1− ε) · σ̃j · a(t) + βj · t ≤ Qj(t) ≤ (1 + ε) · σ̃j · a(t) + βj · t,

j = 1, 2, . . . , k, with probability one.

IV. ON THE MODEL OF THE MULTISTAGE MESSAGE
SWITCHING FACILITY

Finally we present investigation of seperate case of Theorem
3.1 (case of multistage message switchning system). We
investigate here a k-phase queue (i.e., after a customer has
been served in the j-th phase of the queue, he is routed to the
j + 1-th phase of the queue, and, after the service in the k-th
phase of the queue, he leaves the queue). Let us denote by tn
the time of arrival of the n-th customer; by S

(j)
n – the service

time of the n-th customer in the j-th phase; zn = tn+1 − tn;
j = 1, 2, · · · , k.

So, we investigate a multistage message switching system
which consists of k service nodes and in which S

(j)
n =

Sn, j = 1, 2, . . . , k (the service process is identical in phases
of the system).

Next, denote Qj(t) as the queue length of messages in j-th
phase of multistage message switching system at time moment

t; vj(t) =
j∑

i=1

Qi(t) stands the total queue length of messages

until j-phase of the multistage message switching system at
time moment t, j = 1, 2, . . . , k and t > 0.

Let us define β1 = (MSn)−1, β0 = (Mzn)−1, α = β0−β1,
σ̂2

1 = DSn · (MSn)−3 > 0, σ̂2
0 = Dzn · (Mzn)−3 > 0, σ̃2 =

σ̂2
1 + σ̂2

0 .

We assume that the following condition is fulfilled:

α > 0. (3)

In [9] is presented theorem and corollary about total queue
length of messages in multistage message switching system.

Theorem 4.1. If condition (3 ) is fulfilled , then

P

(
lim

t→∞
vj(t) − α · t

σ̃ · a(t)
= 1
)

=

= P

(
lim

t→∞
vj(t) − α · t

σ̃ · a(t)
= −1

)
= 1,

j = 1, 2, . . . , k and a(t) =
√

2t ln ln t.
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V. COMPUTING EXAMPLE

We see that Theorem 4.1 implies that for fixed ε > 0
there exists t(ε) such that for every t ≥ t(ε),

(1− ε) · σ̃ · a(t)+α · t ≤ vj(t) ≤ (1+ ε) · σ̃ · a(t)+α · t, (4)

where a(t) =
√

2t ln ln t, β1 = (MSn)−1, β0 =
(Mzn)−1, α = β0 − β1 > 0, σ̂2

1 = DSn · (MSn)−3 > 0,
σ̂2

0 = Dzn · (Mzn)−3 > 0, σ̃2 = σ̂2
1 + σ̂2

0 , j = 1, 2, . . . , k.

From this we can obtain

1 − ε) · σ̃ · a(t) + α · t ≤ vj(t) ≤ (1 + ε) · σ̃ · a(t) + α · t,

|M(vj(t)− α · t)− {(1− ε) · σ̃ · a(t)}| ≤ 2 · ε · σ̃ · a(t), (5)

M

(
vj(t) − α · t)

σ̃ · a(t)

)
− (1 + ε)| ≤ 2 · ε, j = 1, 2, . . . , k.

So from (5) we can get

Mvj(t) ∼ α · t + (1 + ε) · σ̃ · a(t), j = 1, 2, . . . , k. (6)

Mvj(t) is average total queue length of messages until j-
th phase of the multistage message switching system at time
moment t, j = 1, 2, . . . , k and t > 0 .

We see from (6) that Mvj(t) consists of linear function
and nonlinear slowly increasing function (1+ε) · σ̃ ·a(t), j =
1, 2, . . . , k.

Now we present a technical example from the computer
network practice. Assume that messages arrive at the computer
v1 at the rate λ of 21 per hour during business hours. These
messages are served at a rate μ of 20 per hour in the computer
v1. After service in the computer v1 messages arrive at the
second computer v2. Also we note that messages are served
at a rate μ of 20 per hour in the computer v2. So, messages
is served in computers v1, v2,. . . ,vk, and after messages are
served in computer vk, they leave computer network.

So,
β1 = (MSn)−1 = μ = 20, β0 = (Mzn)−1 = λ =

21, α = 21 − 20 = 1, DSn = 1/μ = 1/20, Dzn =
1/μ = 1/21, σ̂2

1 = DSn · (MSn)−3 = (1/μ)2 = 0.0025,
σ̂2

0 = DSn ·(MSn)−3 = (1/μ)2 = 0.0023, σ̃2 ∼ 0.0047, σ̃ ∼
0.0685, ε = 0.001, t ≥ 100.

Thus,

Mvj(t) ∼ α · t+(1+ε) · σ̃ ·a(t) = (1.00) · t+(0.0685) ·a(t),
(7)

j = 1, 2, . . . , k. From (7) we get

Mvj(t)
t

= (1.00) + (0.0685) ·
√

2 ln ln t

t
, j = 1, 2, . . . , k.

(8)
Now we present figure for Mvj(t)

t , j = 1, 2, . . . , k, when
100 ≤ t ≤ 1000, ε = 0.001 (see (8) and Table 1).

Time t
Mvj(t)

t , j = 1, 2, . . . , k
100 1.0120
200 1.0088
300 1.0074
400 1.0065
500 1.0059
600 1.0054
700 1.0050
800 1.0047
900 1.0045

1000 1.0043

We see that when α = 0.01 > 0, average total queue length
of messages is about 1 in all message system.

Corollary 5.1. Average total queue length of messages
system direcly depends of traffic coefficient α and time t and
is the same in all phases of multistage message system.
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Table 1 Summary of computing results
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