Search results for: training data condensation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8045

Search results for: training data condensation.

7985 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization

Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke

Abstract:

The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.

Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
7984 Rule Insertion Technique for Dynamic Cell Structure Neural Network

Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin

Abstract:

This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.

Keywords: Neural network, rule extraction, rule insertion, self-organizing map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
7983 Understanding Student Pilot Mental Workload in Recreational Aircraft Training

Authors: Ron Bishop, Jim Mitchell, Talitha Best

Abstract:

The increase in air travel worldwide has resulted in a pilot shortage. To increase student pilot capacity and lower costs, flight schools have increased the use of recreational aircraft (RA) with technological advanced cockpits in flight schools. The impact of RA based training compared to general aviation (GA) aircraft training on student mental workload is not well understood. This research investigated student pilot (N = 17) awareness of mental workload between technologically advanced cockpit equipped RA training with analogue gauge equipped GA training. The results showed a significantly higher rating of mental workload across subscales of mental and physical demand on the NASA-TLX in recreational aviation aircraft training compared to GA aircraft. Similarly, thematic content analysis of follow-up questions identified that mental workload of the student pilots flying the RA was perceived to be more than the GA aircraft.

Keywords: Glass cockpit, flight training, mental workload, student pilot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
7982 Possible Futures for Doctoral Research Training in Design

Authors: D. Barron, M. Zeegers

Abstract:

In this paper, we argue that Design research is basic to countries- national productivity and competition agendas at the same time that vagaries of research training presents as one of the barriers faced by Design Higher Degree by Research students in engaging those agendas. We argue that, given industry requirements for research-trained recruits, students have the right to expect that research training will provide the foundations of a successful career on an academic or research pathway or a professional pathway, but that universities have yet to address problems in their provision of research training for Design doctoral students. We suggest that to facilitate this, rigorous research conducted on the provision of Doctoral programs in Design would serve to inform future activities in Design research in productive ways.

Keywords: Design, Doctoral Design Education, Research Training

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
7981 Java Based Automatic Curriculum Generator for Children with Trisomy 21

Authors: E. Supriyanto, S. C. Seow

Abstract:

Early Intervention Program (EIP) is required to improve the overall development of children with Trisomy 21 (Down syndrome). In order to help trainer and parent in the implementation of EIP, a support system has been developed. The support system is able to screen data automatically, store and analyze data, generate individual EIP (curriculum) with optimal training duration and to generate training automatically. The system consists of hardware and software where the software has been implemented using Java language and Linux Fedora. The software has been tested to ensure the functionality and reliability. The prototype has been also tested in Down syndrome centers. Test result shows that the system is reliable to be used for generation of an individual curriculum which includes the training program to improve the motor, cognitive, and combination abilities of Down syndrome children under 6 years.

Keywords: Early intervention program (curriculum), Trisomy21, support system, Java.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
7980 Automated Separation of Organic Liquids through Their Boiling Points

Authors: Muhammad Tahir Qadri, Syed Shafi-Uddin Qadri, Faizan Farid, Nabeel Abid

Abstract:

This paper discuss the separation of the miscible liquids by means of fractional distillation. For complete separation of liquids, the process of heating, condensation, separation and storage is done automatically to achieve the objective. PIC micro-controller has been used to control each and every process of the work. The controller also controls the storage process by activating and deactivating the conveyors. The liquids are heated which on reaching their respective boiling points evaporate and enter the condensation chamber where they convert into liquid. The liquids are then directed to their respective tanks by means of stepper motor which moves in three directions, each movement into different tank. The tank on filling sends the signal to controller which then opens the solenoid valves. The tank is emptied into the beakers below the nozzle. As the beaker filled, the nozzle closes and the conveyors come into operation. The filled beaker is replaced by an empty beaker from behind. The work can be used in oil industries, chemical industries and paint industries.

Keywords: Miscible Liquid Separation Unit, Distillation, Waste Water Treatment, Organic Liquids Collection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
7979 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images

Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi

Abstract:

This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.

Keywords: training algorithm, multiface, static image, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
7978 The Impact of Training Method on Programming Learning Performance

Authors: Chechen Liao, Chin Yi Yang

Abstract:

Although several factors that affect learning to program have been identified over the years, there continues to be no indication of any consensus in understanding why some students learn to program easily and quickly while others have difficulty. Seldom have researchers considered the problem of how to help the students enhance the programming learning outcome. The research had been conducted at a high school in Taiwan. Students participating in the study consist of 330 tenth grade students enrolled in the Basic Computer Concepts course with the same instructor. Two types of training methods-instruction-oriented and exploration-oriented were conducted. The result of this research shows that the instruction-oriented training method has better learning performance than exploration-oriented training method.

Keywords: Learning performance, programming learning, TDD, training method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
7977 Factors of Vocational Identity for Social Welfare University Students in Japan

Authors: J. Sakano, Y. Yajima, W. Ono, Y. Yamazaki, S. Sasahara, Y. Tomotsune, Y. Ohi, S. Suzuki, A. Seki, I. Matsuzaki

Abstract:

The study aimed to verify a hypothesis that a sense of fulfillment in student life and perceived stress in training in the facilities could affect vocational identity among social welfare university students, in order to acquire implications for enhancing the vocational consciousness. A questionnaire survey was conducted with 388 third- and fourth-year students of training course for certified social workers in three universities in A prefecture in Japan. The questionnaire was returned by 338 students, and 288 responses (85.2%) were valid and used for the analysis. As a SEM result, the hypothesized model proved to be fit to the data. Path coefficient of sense of fulfillment of student life to vocational identity was statistically positive. Path coefficient of training stress to vocational identity was statistically negative.

Keywords: Training stress, Physical health, Sense of fulfillment of student life, structural equation modeling (SEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
7976 Evaluating the Australian Defense Force Environmental Awareness Training at Shoalwater Bay Training Area, Queensland, Australia

Authors: W. Wu, X. H. Wang, D. Paull

Abstract:

This paper contributes to the field of Environmental Awareness Training (EAT) evaluation in terms of military activities. Environmental management of military activities is a growing concern for defence forces worldwide and the importance of EAT is becoming widely recognized. As one of Australia-s largest landowners, the Australian Defence Force (ADF) is extremely mindful of its duty as a joint environmental manager. It has an integrated Environmental Management System (EMS) to assist environmental management and EAT is an essential part of the ADF EMS model. This paper examines how EAT was conducted during the exercise Talisman Saber in 2009 (TS09) and evaluates its effectiveness, using Shoalwater Bay Training Area (SWBTA), one of the most significant military training areas and a significant protected area in Australia, as a case study. A questionnaire survey conducted showed, overall, that EAT was effective from the perspective of a sample of participants. Recommendations are made for the ADF to refine EAT for future exercises.

Keywords: Australian Defence Force, effectiveness evaluation, Environmental Awareness Training, Shoalwater Bay Training Area

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
7975 Simulation Tools for Training in the Case of Energy Sector Crisis

Authors: H. Malachova, A. Oulehlova, D. Rezac

Abstract:

Crisis preparedness training is the best possible strategy for identifying weak points, understanding vulnerability, and finding possible strategies for mitigation of blackout consequences. Training represents an effective tool for developing abilities and skills to cope with crisis situations. This article builds on the results of the research carried out in the field of preparation, realization, process, and impacts of training on subjects of energy sector critical infrastructure as a part of crisis preparedness. The research has revealed that the subjects of energy sector critical infrastructure have not realized training and therefore are not prepared for the restoration of the energy supply and black start after blackout regardless of the fact that most subjects state blackout and subsequent black start as key dangers. Training, together with mutual communication and processed crisis documentation, represent a basis for successful solutions for dealing with emergency situations. This text presents the suggested model of SIMEX simulator as a tool which supports managing crisis situations, containing training environment. Training models, possibilities of constructive simulation making use of non-aggregated as well as aggregated entities and tools of communication channels of individual simulator nodes have been introduced by the article.

Keywords: Energetic critical infrastructure, preparedness, training, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
7974 A Training Model for Successful Implementation of Enterprise Resource Planning

Authors: Volker Heierhoff, Aurilla Aurelie Bechina Arntzen, Gerrit Muller

Abstract:

It well recognized that one feature that makes a successful company is its ability to successfully align its business goals with its information communication technologies platform. Enterprise Resource Planning (ERP) systems contribute to achieve better performance by integrating various business functions and providing support for information flows. However, the technological systems complexity is known to prevent the business users to exploit in an efficient way the Enterprise Resource Planning Systems (ERP). This paper aims to investigate the role of training in improving the usage of ERP systems. To this end, we have designed an instrument survey to employees of a Norwegian multinational global provider of technology solutions. Based on the analysis of collected data, we have delineated a training model that could be high relevance for both researchers and practitioners as a step towards a better understanding of ERP system implementation.

Keywords: Business User Training, Enterprise resource planning system, Global consulting company, Role and responsibilities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
7973 Evaluating Factors Affecting Audiologists’ Diagnostic Performance in Auditory Brainstem Response Reading: Training and Experience

Authors: M. Zaitoun, S. Cumming, A. Purcell

Abstract:

This study aims to determine if audiologists' experience characteristics in ABR (Auditory Brainstem Response) reading is associated with their performance in interpreting ABR results. Fifteen ABR traces with varying degrees of hearing level were presented twice, making a total of 30. Audiologists were asked to determine the hearing threshold for each of the cases after completing a brief survey regarding their experience and training in ABR administration. Sixty-one audiologists completed all tasks. Correlations between audiologists’ performance measures and experience variables suggested significant associations (p < 0.05) between training period in ABR testing and audiologists’ performance in terms of both sensitivity and accuracy. In addition, the number of years conducting ABR testing correlated with specificity. No other correlations approached significance. While there are relatively few significant correlations between ABR performance and experience, accuracy in ABR reading is associated with audiologists’ length of experience and period of training. To improve audiologists’ performance in reading ABR results, an emphasis on the importance of training should be raised and standardized levels and period for audiologists training in ABR testing should also be set.

Keywords: ABR, audiology, performance, training, experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
7972 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150
7971 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: Audit, machine learning, assessment, metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021
7970 Classifier Based Text Mining for Neural Network

Authors: M. Govindarajan, R. M. Chandrasekaran

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Keywords: Back propagation, classification accuracy, textmining, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4217
7969 Evaluating the Effect of Farmers’ Training on Rice Production in Sierra Leone: A Case Study of Rice Cultivation in Lowland Ecology

Authors: Alhaji M. H. Conteh, Xiangbin Yan, M. E. S. Mvodo

Abstract:

This study endeavors to evaluate the effects of farmers’ training program on the adoption of improved farming practices, the output of rice farming, and the income as well as the profit from rice farming by employing an ex-post non-experimental data in Sierra Leone. It was established that participating in farmers’ training program increased the possibility of adoption of the improved farming activities that were implemented in the study area. Through the training program also, the proceeds from rice production was also established to have increased considerably. These results were in line with the assumption that one of the main constraints on the growth in agricultural output particularly rice cultivation in most African states is the lack of efficient extension programs.

Keywords: Dissemination of information, improved farming practices, rice ecologies, Sierra Leone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
7968 The Pedagogical Integration of Digital Technologies in Initial Teacher Training

Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos

Abstract:

The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.

Keywords: Digital technologies, initial teacher training, pedagogical use of ICT, skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
7967 The Effects of Eight-Week Pilates Training on Limits of Stability and Abdominal Muscle Strength in Young Dancers

Authors: Yen-Ting Wang, Pao-Cheng Lin, Chen-Fu Huang, Lung-Ching Liang, Alex J.Y. Lee

Abstract:

This study examined the effects of 8-week Pilates training program on limits of stability (LOS) and abdominal muscle strength in young dancers. Twenty-four female volunteered and randomly assigned as experimental group (EG) or control group (CG). All subjects received the same dance lessons but the EG underwent an extra Pilates mat exercises for 40 minutes, three times a week, for 8 weeks. LOS was evaluated by the Biodex Balance System and the abdominal strength was measured by 30/60 seconds sit-ups test. One factor ANCOVA was used to examine the differences between groups after training. The results showed that the overall LOS scores at levels 2/8 and the 30/60 seconds sit-ups for the EG group pre- and post-training were changed from 22/38 % to 31/51 % and 20/33 times to 24/42 times, respectively. The study demonstrated that 8-week Pilates training can improve the LOS performance and abdominal strength in young dancers.

Keywords: Balance, Core Strength Exercise Training, and Posture Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
7966 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: Classification, probabilistic neural networks, network optimization, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
7965 Soft-Sensor for Estimation of Gasoline Octane Number in Platforming Processes with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Authors: Hamed.Vezvaei, Sepideh.Ordibeheshti, Mehdi.Ardjmand

Abstract:

Gasoline Octane Number is the standard measure of the anti-knock properties of a motor in platforming processes, that is one of the important unit operations for oil refineries and can be determined with online measurement or use CFR (Cooperative Fuel Research) engines. Online measurements of the Octane number can be done using direct octane number analyzers, that it is too expensive, so we have to find feasible analyzer, like ANFIS estimators. ANFIS is the systems that neural network incorporated in fuzzy systems, using data automatically by learning algorithms of NNs. ANFIS constructs an input-output mapping based both on human knowledge and on generated input-output data pairs. In this research, 31 industrial data sets are used (21 data for training and the rest of the data used for generalization). Results show that, according to this simulation, hybrid method training algorithm in ANFIS has good agreements between industrial data and simulated results.

Keywords: Adaptive Neuro-Fuzzy Inference Systems, GasolineOctane Number, Soft-sensor, Catalytic Naphtha Reforming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
7964 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings

Authors: Sorin Valcan, Mihail Găianu

Abstract:

Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need of labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to a ground truth data generation algorithm for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual labels adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.

Keywords: Labeling automation, infrared camera, driver monitoring, eye detection, Convolutional Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
7963 Assessing the Impact of Quinoa Cultivation Adopted to Produce a Secure Food Crop and Poverty Reduction by Farmers in Rural Pakistan

Authors: Ejaz Ashraf, Raheel Babar, Muhammad Yaseen, Hafiz Khurram Shurjeel, Nosheen Fatima

Abstract:

Main purpose of this study was to assess adoption level of farmers for quinoa cultivation after they had been taught through training and visit extension approach. At this time of the 21st century, population structure, climate change, food requirements and eating habits of people are changing rapidly. In this scenario, farmers must play their key role in sustainable crop development and production through adoption of new crops that may also be helpful to overcome the issue of food insecurity as well as reducing poverty in rural areas. Its cultivation in Pakistan is at the early stages and there is a need to raise awareness among farmers to grow quinoa crops. In the middle of the 2015, a training and visit extension approach was used to raise awareness and convince farmers to grow quinoa in the area. During training and visit extension program, 80 farmers were randomly selected for the training of quinoa cultivation. Later on, these farmers trained 60 more farmers living into their neighborhood. After six months, a survey was conducted with all 140 farmers to assess the impact of the training and visit program on adoption level of respondents for the quinoa crop. The survey instrument was developed with the help of literature review and other experts of the crop. Validity and reliability of the instrument were checked before complete data collection. The data were analyzed by using SPSS. Multiple regression analysis was used for interpretation of the results from the survey, which indicated that factors like information/ training, change in agronomic and plant protection practices play a key role in the adoption of quinoa cultivation by respondents. In addition, the model explains more than 50% of variation in the adoption level of respondents. It is concluded that farmers need timely information for improved knowledge of agronomic and plant protection practices to adopt cultivation of the quinoa crop in the area.

Keywords: Farmers, quinoa, adoption, contact, training and visit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
7962 The AI Application and Talent Demand of Taiwan High-Tech Manufacturing Industry

Authors: Shi-Yu Lu, Chung-Han Yeh, Li-Ping Chen, Yu-Cheng Chang

Abstract:

This paper uses both quantitative and qualitative approaches to survey the current status of AI-related applications and the structure of key AI jobs in Taiwan's high-tech manufacturing industry, as well as the demand for professional AI talents, skills, and training. The result shows that AI applications and talent demand vary from different industries in many aspects, including technologies used, talent structure, and training methods. This paper serves as a reference for the government to establish appropriate talent training programs, and to reduce the demand gap for professional AI talents in Taiwan manufacturers.

Keywords: Artificial intelligence, manufacturing, talent, training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390
7961 A Comparative Study of the Effectiveness of Trained Inspectors in Different Workloads between Feed Forward and Feedback Training

Authors: Sittichai K., Anucha W., Phonsak L.

Abstract:

Objective of this study was to study and compare the effectiveness of inspectors who had different workloads for feed forward and feedback training. The visual search task was simulated to search for specified alphabets called defects. These defects were included of four alphabets in Thai and English such as s ภ, ถ, X, and V with different background. These defects were combined in the specified alphabets and were given the different three backgrounds i.e., Thai, English, and mixed English and Thai alphabets. Sixty students were chosen as a sample in this study and test for final selection subject. Finally, five subjects were taken into testing process. They were asked to search for defects after they were provided basic information. Experiment design was used factorial design and subjects were trained for feed forward and the feedback training. The results show that both trainings were affected on mean search time. It was also found that the feedback training can increase the effectiveness of visual inspectors rather than the feed forward training significantly different at the level of .05

Keywords: visual search, feed forward, feedback training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
7960 Variability of Covariance of Selected Skeletal Diameters of Female in a Longitudinal Physical Training Programme

Authors: Dhananjoy Shaw, Seema Sharma (Kaushik)

Abstract:

Anthropometry helps in associating the physical properties of an individual with their racial, cultural, and psychological attributes. Numerous research studies have included different skeletal diameters as a variable. However, most of the studies suggest their inclusion describing specific characteristics/traits of the body. However, there seems to be a scarcity of literature related to the effect of any kind of longitudinal physical training on human skeletal diameters. Hence, the present investigation was conducted to study the variability of covariance of selected skeletal diameters of females in a longitudinal physical training programme. The sample for the study was 78 college going students of the University of Delhi, classified equally in three groups, i.e. viz. (a) Progressive load of training or conditioning group coded as PLT; (b) Constant load of training or non-conditioning group coded as CLT; and (c) No-load or control or sedentary group coded as NL. Collectively, mean age of the sample was 19.54±1.79 years. The randomly selected samples were given maximum consideration to maintain their homogeneity. The variables included biacromial diameter, biiliocristal diameter, bitrochantaerion diameter, humeral bicondylar, femoral bicondylar, wrist diameter, ankle diameter, and foot breadth. Multi-group repeated measure design was adopted for the experimentation. Each group was measured four times after completion of each of the three meso-cycles of six-weeks duration. The measurements were taken following the standard landmarks and procedures. Mean, standard deviation, analysis of co-variance and its post-hoc analysis were computed to analyze the data statistically. The study concluded that both the progressive and constant load of physical training bring changes in the selected skeletal diameters of females. It also reflected the increase due to growth also along with training.

Keywords: Longitudinal, physical training, skeletal diameters, step progression load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
7959 Application of Neural Network in User Authentication for Smart Home System

Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat

Abstract:

Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.

Keywords: Neural Network, User Authentication, Smart Home, Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
7958 Hearing Aids Maintenance Training for Hearing-Impaired Preschool Children with the Help of Motion Graphic Tools

Authors: M. Mokhtarzadeh, M. Taheri Qomi, M. Nikafrooz, A. Atashafrooz

Abstract:

The purpose of the present study was to investigate the effectiveness of using motion graphics as a learning medium on training hearing aids maintenance skills to hearing-impaired children. The statistical population of this study consisted of all children with hearing loss in Ahvaz city, at age 4 to 7 years old. As the sample, 60, whom were selected by multistage random sampling, were randomly assigned to two groups; experimental (30 children) and control (30 children) groups. The research method was experimental and the design was pretest-posttest with the control group. The intervention consisted of a 2-minute motion graphics clip to train hearing aids maintenance skills. Data were collected using a 9-question researcher-made questionnaire. The data were analyzed by using one-way analysis of covariance. Results showed that the training of hearing aids maintenance skills with motion graphics was significantly effective for those children. The results of this study can be used by educators, teachers, professionals, and parents to train children with disabilities or normal students.

Keywords: Hearing-impaired children, hearing aids, hearing aids maintenance skill, and motion graphics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
7957 Collaborative Education Practice in a Data Structure E-Learning Course

Authors: Gang Chen, Ruimin Shen

Abstract:

This paper presented a collaborative education model, which consists four parts: collaborative teaching, collaborative working, collaborative training and interaction. Supported by an e-learning platform, collaborative education was practiced in a data structure e-learning course. Data collected shows that most of students accept collaborative education. This paper goes one step attempting to determine which aspects appear to be most important or helpful in collaborative education.

Keywords: Collaborative work, education, data structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
7956 Improving RBF Networks Classification Performance by using K-Harmonic Means

Authors: Z. Zainuddin, W. K. Lye

Abstract:

In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.

Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849