Search results for: combinatorial identities.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 146

Search results for: combinatorial identities.

86 Solving the Quadratic Assignment Problems by a Genetic Algorithm with a New Replacement Strategy

Authors: Yongzhong Wu, Ping Ji

Abstract:

This paper proposes a genetic algorithm based on a new replacement strategy to solve the quadratic assignment problems, which are NP-hard. The new replacement strategy aims to improve the performance of the genetic algorithm through well balancing the convergence of the searching process and the diversity of the population. In order to test the performance of the algorithm, the instances in QAPLIB, a quadratic assignment problem library, are tried and the results are compared with those reported in the literature. The performance of the genetic algorithm is promising. The significance is that this genetic algorithm is generic. It does not rely on problem-specific genetic operators, and may be easily applied to various types of combinatorial problems.

Keywords: Quadratic assignment problem, Genetic algorithm, Replacement strategy, QAPLIB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
85 A New Effective Local Search Heuristic for the Maximum Clique Problem

Authors: S. Balaji

Abstract:

An edge based local search algorithm, called ELS, is proposed for the maximum clique problem (MCP), a well-known combinatorial optimization problem. ELS is a two phased local search method effectively £nds the near optimal solutions for the MCP. A parameter ’support’ of vertices de£ned in the ELS greatly reduces the more number of random selections among vertices and also the number of iterations and running times. Computational results on BHOSLIB and DIMACS benchmark graphs indicate that ELS is capable of achieving state-of-the-art-performance for the maximum clique with reasonable average running times.

Keywords: Maximum clique, local search, heuristic, NP-complete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
84 An Augmented Beam-search Based Algorithm for the Strip Packing Problem

Authors: Hakim Akeb, Mhand Hifi

Abstract:

In this paper, the use of beam search and look-ahead strategies for solving the strip packing problem (SPP) is investigated. Given a strip of fixed width W, unlimited length L, and a set of n circular pieces of known radii, the objective is to determine the minimum length of the initial strip that packs all the pieces. An augmented algorithm which combines beam search and a look-ahead strategies is proposed. The look-ahead is used in order to evaluate the nodes at each level of the tree search. The best nodes are then retained for branching. The computational investigation showed that the proposed augmented algorithm is able to improve the best known solutions of the literature on most instances used.

Keywords: Combinatorial optimization, cutting and packing, beam search, heuristic, look-ahead strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
83 Presenting a Combinatorial Feature to Estimate Depth of Anesthesia

Authors: Toktam Zoughi, Reza Boostani

Abstract:

Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.

Keywords: Depth of anesthesia, EEG, BIS, Wavelet transforms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
82 An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Genetic algorithm, Job shop scheduling problem, Local search, Meta-heuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
81 Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space

Authors: Gishantha Thantulage, Tatiana Kalganova, Manissa Wilson

Abstract:

Ant Colony Algorithms have been applied to difficult combinatorial optimization problems such as the travelling salesman problem and the quadratic assignment problem. In this paper gridbased and random-based ant colony algorithms are proposed for automatic 3D hose routing and their pros and cons are discussed. The algorithm uses the tessellated format for the obstacles and the generated hoses in order to detect collisions. The representation of obstacles and hoses in the tessellated format greatly helps the algorithm towards handling free-form objects and speeds up computation. The performance of algorithm has been tested on a number of 3D models.

Keywords: Ant colony algorithm, Automatic hose routing, tessellated format, RAPID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
80 Investigation on Novel Based Metaheuristic Algorithms for Combinatorial Optimization Problems in Ad Hoc Networks

Authors: C. Rajan, N. Shanthi, C. Rasi Priya, K. Geetha

Abstract:

Routing in MANET is extremely challenging because of MANETs dynamic features, its limited bandwidth, frequent topology changes caused by node mobility and power energy consumption. In order to efficiently transmit data to destinations, the applicable routing algorithms must be implemented in mobile ad-hoc networks. Thus we can increase the efficiency of the routing by satisfying the Quality of Service (QoS) parameters by developing routing algorithms for MANETs. The algorithms that are inspired by the principles of natural biological evolution and distributed collective behavior of social colonies have shown excellence in dealing with complex optimization problems and are becoming more popular. This paper presents a survey on few meta-heuristic algorithms and naturally-inspired algorithms.

Keywords: Ant colony optimization, genetic algorithm, Naturally-inspired algorithms and particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
79 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem

Authors: W. Wongthatsanekorn, N. Matheekrieangkrai

Abstract:

This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.

Keywords: Bee Colony Optimization, Ready Mixed Concrete Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
78 A Heuristic Algorithm Approach for Scheduling of Multi-criteria Unrelated Parallel Machines

Authors: Farhad Kolahan, Vahid Kayvanfar

Abstract:

In this paper we address a multi-objective scheduling problem for unrelated parallel machines. In unrelated parallel systems, the processing cost/time of a given job on different machines may vary. The objective of scheduling is to simultaneously determine the job-machine assignment and job sequencing on each machine. In such a way the total cost of the schedule is minimized. The cost function consists of three components, namely; machining cost, earliness/tardiness penalties and makespan related cost. Such scheduling problem is combinatorial in nature. Therefore, a Simulated Annealing approach is employed to provide good solutions within reasonable computational times. Computational results show that the proposed approach can efficiently solve such complicated problems.

Keywords: Makespan, Parallel machines, Scheduling, Simulated Annealing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
77 Implementation of Heuristics for Solving Travelling Salesman Problem Using Nearest Neighbour and Minimum Spanning Tree Algorithms

Authors: Fatma A. Karkory, Ali A. Abudalmola

Abstract:

The travelling salesman problem (TSP) is a combinatorial optimization problem in which the goal is to find the shortest path between different cities that the salesman takes. In other words, the problem deals with finding a route covering all cities so that total distance and execution time is minimized. This paper adopts the nearest neighbor and minimum spanning tree algorithm to solve the well-known travelling salesman problem. The algorithms were implemented using java programming language. The approach is tested on three graphs that making a TSP tour instance of 5-city, 10 –city, and 229–city. The computation results validate the performance of the proposed algorithm.

Keywords: Heuristics, minimum spanning tree algorithm, Nearest Neighbor, Travelling Salesman Problem (TSP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7820
76 The Knapsack Sharing Problem: A Tree Search Exact Algorithm

Authors: Mhand Hifi, Hedi Mhalla

Abstract:

In this paper, we study the knapsack sharing problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of a tree search for optimally solving the problem. The used method combines two complementary phases: a reduction interval search phase and a branch and bound procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for decomposing the problem into a series of knapsack problems. Second, the tree search procedure is applied in order to attain a set of optimal capacities characterizing the knapsack problems. Finally, the performance of the proposed optimal algorithm is evaluated on a set of instances of the literature and its runtime is compared to the best exact algorithm of the literature.

Keywords: Branch and bound, combinatorial optimization, knap¬sack, knapsack sharing, heuristics, interval reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
75 An Integrated Framework for the Realtime Investigation of State Space Exploration

Authors: Jörg Lassig, Stefanie Thiem

Abstract:

The objective of this paper is the introduction to a unified optimization framework for research and education. The OPTILIB framework implements different general purpose algorithms for combinatorial optimization and minimum search on standard continuous test functions. The preferences of this library are the straightforward integration of new optimization algorithms and problems as well as the visualization of the optimization process of different methods exploring the search space exclusively or for the real time visualization of different methods in parallel. Further the usage of several implemented methods is presented on the basis of two use cases, where the focus is especially on the algorithm visualization. First it is demonstrated how different methods can be compared conveniently using OPTILIB on the example of different iterative improvement schemes for the TRAVELING SALESMAN PROBLEM. A second study emphasizes how the framework can be used to find global minima in the continuous domain.

Keywords: Global Optimization Heuristics, Particle Swarm Optimization, Ensemble Based Threshold Accepting, Ruin and Recreate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
74 Neighbors of Indefinite Binary Quadratic Forms

Authors: Ahmet Tekcan

Abstract:

In this paper, we derive some algebraic identities on right and left neighbors R(F) and L(F) of an indefinite binary quadratic form F = F(x, y) = ax2 + bxy + cy2 of discriminant Δ = b2 -4ac. We prove that the proper cycle of F can be given by using its consecutive left neighbors. Also we construct a connection between right and left neighbors of F.

Keywords: Quadratic form, indefinite form, cycle, proper cycle, right neighbor, left neighbor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
73 Reduction of Search Space by Applying Controlled Genetic Operators for Weight Constrained Shortest Path Problem

Authors: A.K.M. Khaled Ahsan Talukder, Taibun Nessa, Kaushik Roy

Abstract:

The weight constrained shortest path problem (WCSPP) is one of most several known basic problems in combinatorial optimization. Because of its importance in many areas of applications such as computer science, engineering and operations research, many researchers have extensively studied the WCSPP. This paper mainly concentrates on the reduction of total search space for finding WCSP using some existing Genetic Algorithm (GA). For this purpose, some controlled schemes of genetic operators are adopted on list chromosome representation. This approach gives a near optimum solution with smaller elapsed generation than classical GA technique. From further analysis on the matter, a new generalized schema theorem is also developed from the philosophy of Holland-s theorem.

Keywords: Genetic Algorithm, Evolutionary Optimization, Multi Objective Optimization, Non-linear Schema Theorem, WCSPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
72 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem

Authors: Y. Wang

Abstract:

The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.

Keywords: Frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
71 Heuristic Set-Covering-Based Postprocessing for Improving the Quine-McCluskey Method

Authors: Miloš Šeda

Abstract:

Finding the minimal logical functions has important applications in the design of logical circuits. This task is solved by many different methods but, frequently, they are not suitable for a computer implementation. We briefly summarise the well-known Quine-McCluskey method, which gives a unique procedure of computing and thus can be simply implemented, but, even for simple examples, does not guarantee an optimal solution. Since the Petrick extension of the Quine-McCluskey method does not give a generally usable method for finding an optimum for logical functions with a high number of values, we focus on interpretation of the result of the Quine-McCluskey method and show that it represents a set covering problem that, unfortunately, is an NP-hard combinatorial problem. Therefore it must be solved by heuristic or approximation methods. We propose an approach based on genetic algorithms and show suitable parameter settings.

Keywords: Boolean algebra, Karnaugh map, Quine-McCluskey method, set covering problem, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
70 Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)

Authors: Esmail Limouzade, Mahmood.Joorabian, Najaf Hedayat

Abstract:

This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.

Keywords: Genetic Algorithm (GA) , capacitor placement, voltage profile, network losses, Simulated Annealing, distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
69 A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem

Authors: Mohsen Ziaee

Abstract:

In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.

Keywords: Scheduling, flexible job shop, makespan, mixed integer linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
68 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation

Authors: Zhichao Zhao, Yi Liu, Shunping Xiao

Abstract:

A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.

Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
67 Stability Analysis for a Multicriteria Problem with Linear Criteria and Parameterized Principle of Optimality “from Lexicographic to Slater“

Authors: Yury Nikulin

Abstract:

A multicriteria linear programming problem with integer variables and parameterized optimality principle "from lexicographic to Slater" is considered. A situation in which initial coefficients of penalty cost functions are not fixed but may be potentially a subject to variations is studied. For any efficient solution, appropriate measures of the quality are introduced which incorporate information about variations of penalty cost function coefficients. These measures correspond to the so-called stability and accuracy functions defined earlier for efficient solutions of a generic multicriteria combinatorial optimization problem with Pareto and lexicographic optimality principles. Various properties of such functions are studied and maximum norms of perturbations for which an efficient solution preserves the property of being efficient are calculated.

Keywords: Stability and accuracy, multicriteria optimization, lexicographic optimality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
66 N-Sun Decomposition of Complete Graphs and Complete Bipartite Graphs

Authors: R. Anitha, R. S. Lekshmi

Abstract:

Graph decompositions are vital in the study of combinatorial design theory. Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G into disjoint isomorphic copies of H. An n-sun is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper we have proved that the complete graph of order 2n, K2n can be decomposed into n-2 n-suns, a Hamilton cycle and a perfect matching, when n is even and for odd case, the decomposition is n-1 n-suns and a perfect matching. For an odd order complete graph K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is decomposed as in the case of even order. The method of building n-suns uses Walecki's construction for the Hamilton decomposition of complete graphs. A spanning tree decomposition of even order complete graphs is also discussed using the labeling scheme of n-sun decomposition. A complete bipartite graph Kn, n can be decomposed into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be decomposed into (n-2)/2 n-suns and a Hamilton cycle.

Keywords: Hamilton cycle, n-sun decomposition, perfectmatching, spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
65 Hybrid Artificial Immune System for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. This paper presents a hybrid artificial immune system for the JSSP with the objective of minimizing makespan. The proposed approach combines the artificial immune system, which has a powerful global exploration capability, with the local search method, which can exploit the optimal antibody. The antibody coding scheme is based on the operation based representation. The decoding procedure limits the search space to the set of full active schedules. In each generation, a local search heuristic based on the neighborhood structure proposed by Nowicki and Smutnicki is applied to improve the solutions. The approach is tested on 43 benchmark problems taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Artificial immune system, Job shop scheduling problem, Local search, Metaheuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
64 New Identity Management Scheme and its Formal Analysis

Authors: Jeonghoon Han, Hanjae Jeong, Dongho Won, Seungjoo Kim

Abstract:

As the Internet technology has developed rapidly, the number of identities (IDs) managed by each individual person has increased and various ID management technologies have been developed to assist users. However, most of these technologies are vulnerable to the existing hacking methods such as phishing attacks and key-logging. If the administrator-s password is exposed, an attacker can access the entire contents of the stolen user-s data files in other devices. To solve these problems, we propose here a new ID management scheme based on a Single Password Protocol. The paper presents the details of the new scheme as well as a formal analysis of the method using BAN Logic.

Keywords: Anti-phishing, BAN Logic, ID management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
63 Achieving Fair Share Objectives via Goal-Oriented Parallel Computer Job Scheduling Policies

Authors: Sangsuree Vasupongayya

Abstract:

Fair share is one of the scheduling objectives supported on many production systems. However, fair share has been shown to cause performance problems for some users, especially the users with difficult jobs. This work is focusing on extending goaloriented parallel computer job scheduling policies to cover the fair share objective. Goal-oriented parallel computer job scheduling policies have been shown to achieve good scheduling performances when conflicting objectives are required. Goal-oriented policies achieve such good performance by using anytime combinatorial search techniques to find a good compromised schedule within a time limit. The experimental results show that the proposed goal-oriented parallel computer job scheduling policy (namely Tradeofffs( Tw:avgX)) achieves good scheduling performances and also provides good fair share performance.

Keywords: goal-oriented parallel job scheduling policies, fairshare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
62 A Meta-Heuristic Algorithm for Set Covering Problem Based on Gravity

Authors: S. Raja Balachandar, K. Kannan

Abstract:

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving large size set covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the set covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

Keywords: Set covering problem, velocity, gravitational force, Newton's law, meta heuristic, combinatorial optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
61 Dynamic Construction Site Layout Using Ant Colony Optimization

Authors: Y. Abdelrazig

Abstract:

Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.

Keywords: Construction site layout, optimization, ant colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123
60 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem

Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang

Abstract:

Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.

Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
59 Electronic Government in the GCC Countries

Authors: A.M. Al-Khouri, J. Bal

Abstract:

The study investigated the practices of organisations in Gulf Cooperation Council (GCC) countries with regards to G2C egovernment maturity. It reveals that e-government G2C initiatives in the surveyed countries in particular, and arguably around the world in general, are progressing slowly because of the lack of a trusted and secure medium to authenticate the identities of online users. The authors conclude that national ID schemes will play a major role in helping governments reap the benefits of e-government if the three advanced technologies of smart card, biometrics and public key infrastructure (PKI) are utilised to provide a reliable and trusted authentication medium for e-government services.

Keywords: e-Government, G2C, national ID, online authentication, biometrics, PKI, smart card.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
58 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
57 Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications

Authors: Yong-Taeg Oh, Won Song, Seok-Eui Choi, Bo-Ra Koo, Dong-Chan Shin

Abstract:

ZnO+Ga2O3 functionally graded thin films (FGTFs) were examined for their potential use as Solar cell and organic light emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO) were fabricated by combinatorial RF magnetron sputtering. The composition gradient was controlled up to 10% by changing the plasma power of the two sputter guns. A Ga2O3+ZnO graded region was placed on the top layer of ZnO. The FGTFs showed up to 80% transmittance. Their surface resistances were reduced to < 10% by increasing the Ga2O3: pure ZnO ratio in the TCO. The FGTFs- work functions could be controlled within a range of 0.18 eV. The controlled work function is a very promising technology because it reduces the contact resistance between the anode and Hall transport layers of OLED and solar cell devices.

Keywords: Work Function, TCO, Functionally Graded Thin Films, Resistance, Transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368