Search results for: data discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7543

Search results for: data discovery

6703 A Modified AES Based Algorithm for Image Encryption

Authors: M. Zeghid, M. Machhout, L. Khriji, A. Baganne, R. Tourki

Abstract:

With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. In this paper, we analyze the Advanced Encryption Standard (AES), and we add a key stream generator (A5/1, W7) to AES to ensure improving the encryption performance; mainly for images characterised by reduced entropy. The implementation of both techniques has been realized for experimental purposes. Detailed results in terms of security analysis and implementation are given. Comparative study with traditional encryption algorithms is shown the superiority of the modified algorithm.

Keywords: Cryptography, Encryption, Advanced EncryptionStandard (AES), ECB mode, statistical analysis, key streamgenerator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5056
6702 Zero Inflated Strict Arcsine Regression Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model.

Keywords: Overdispersed count data, maximum likelihood estimation, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
6701 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: Big data, k-NN, machine learning, traffic speed prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
6700 GA Based Optimal Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.

Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
6699 An Experimental Study of a Self-Supervised Classifier Ensemble

Authors: Neamat El Gayar

Abstract:

Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs.

Keywords: Multiple Classifier Systems, classifier ensembles, learning using labeled and unlabelled data, K-nearest neighbor classifier, Bayes classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
6698 Delay Analysis of Sampled-Data Systems in Hard RTOS

Authors: A. M. Azad, M. Alam, C. M. Hussain

Abstract:

In this paper, we have presented the effect of varying time-delays on performance and stability in the single-channel multirate sampled-data system in hard real-time (RT-Linux) environment. The sampling task require response time that might exceed the capacity of RT-Linux. So a straight implementation with RT-Linux is not feasible, because of the latency of the systems and hence, sampling period should be less to handle this task. The best sampling rate is chosen for the sampled-data system, which is the slowest rate meets all performance requirements. RT-Linux is consistent with its specifications and the resolution of the real-time is considered 0.01 seconds to achieve an efficient result. The test results of our laboratory experiment shows that the multi-rate control technique in hard real-time operating system (RTOS) can improve the stability problem caused by the random access delays and asynchronization.

Keywords: Multi-rate, PID, RT-Linux, Sampled-data, Servo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
6697 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data

Authors: Wann-Ming Wey

Abstract:

In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.

Keywords: Adaptive reuse, analytic network process, big data, land use strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
6696 A Review and Comparative Analysis on Cluster Ensemble Methods

Authors: S. Sarumathi, P. Ranjetha, C. Saraswathy, M. Vaishnavi, S. Geetha

Abstract:

Clustering is an unsupervised learning technique for aggregating data objects into meaningful classes so that intra cluster similarity is maximized and inter cluster similarity is minimized in data mining. However, no single clustering algorithm proves to be the most effective in producing the best result. As a result, a new challenging technique known as the cluster ensemble approach has blossomed in order to determine the solution to this problem. For the cluster analysis issue, this new technique is a successful approach. The cluster ensemble's main goal is to combine similar clustering solutions in a way that achieves the precision while also improving the quality of individual data clustering. Because of the massive and rapid creation of new approaches in the field of data mining, the ongoing interest in inventing novel algorithms necessitates a thorough examination of current techniques and future innovation. This paper presents a comparative analysis of various cluster ensemble approaches, including their methodologies, formal working process, and standard accuracy and error rates. As a result, the society of clustering practitioners will benefit from this exploratory and clear research, which will aid in determining the most appropriate solution to the problem at hand.

Keywords: Clustering, cluster ensemble methods, consensus function, data mining, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
6695 Simultaneous Clustering and Feature Selection Method for Gene Expression Data

Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar

Abstract:

Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.

Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
6694 Segmentation Free Nastalique Urdu OCR

Authors: Sobia T. Javed, Sarmad Hussain, Ameera Maqbool, Samia Asloob, Sehrish Jamil, Huma Moin

Abstract:

The electronically available Urdu data is in image form which is very difficult to process. Printed Urdu data is the root cause of problem. So for the rapid progress of Urdu language we need an OCR systems, which can help us to make Urdu data available for the common person. Research has been carried out for years to automata Arabic and Urdu script. But the biggest hurdle in the development of Urdu OCR is the challenge to recognize Nastalique Script which is taken as standard for writing Urdu language. Nastalique script is written diagonally with no fixed baseline which makes the script somewhat complex. Overlap is present not only in characters but in the ligatures as well. This paper proposes a method which allows successful recognition of Nastalique Script.

Keywords: HMM, Image processing, Optical CharacterRecognition, Urdu OCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
6693 The Advent of Electronic Logbook Technology - Reducing Cost and Risk to Both Marine Resources and the Fishing Industry

Authors: Amos Barkai, Guy Meredith, Fatima Felaar, Zahrah Dantie, Dave de Buys

Abstract:

Fisheries management all around the world is hampered by the lack, or poor quality, of critical data on fish resources and fishing operations. The main reasons for the chronic inability to collect good quality data during fishing operations is the culture of secrecy common among fishers and the lack of modern data gathering technology onboard most fishing vessels. In response, OLRAC-SPS, a South African company, developed fisheries datalogging software (eLog in short) and named it Olrac. The Olrac eLog solution is capable of collecting, analysing, plotting, mapping, reporting, tracing and transmitting all data related to fishing operations. Olrac can be used by skippers, fleet/company managers, offshore mariculture farmers, scientists, observers, compliance inspectors and fisheries management authorities. The authors believe that using eLog onboard fishing vessels has the potential to revolutionise the entire process of data collection and reporting during fishing operations and, if properly deployed and utilised, could transform the entire commercial fleet to a provider of good quality data and forever change the way fish resources are managed. In addition it will make it possible to trace catches back to the actual individual fishing operation, to improve fishing efficiency and to dramatically improve control of fishing operations and enforcement of fishing regulations.

Keywords: data management, electronic logbook (eLog), electronic reporting system (ERS), fisheries management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
6692 Integrated Method for Detection of Unknown Steganographic Content

Authors: Magdalena Pejas

Abstract:

This article concerns the presentation of an integrated method for detection of steganographic content embedded by new unknown programs. The method is based on data mining and aggregated hypothesis testing. The article contains the theoretical basics used to deploy the proposed detection system and the description of improvement proposed for the basic system idea. Further main results of experiments and implementation details are collected and described. Finally example results of the tests are presented.

Keywords: Steganography, steganalysis, data embedding, data mining, feature extraction, knowledge base, system learning, hypothesis testing, error estimation, black box program, file structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
6691 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
6690 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: Spatial analysis, change detection, aerosol, trend analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
6689 Discovering Complex Regularities by Adaptive Self Organizing Classification

Authors: A. Faro, D. Giordano, F. Maiorana

Abstract:

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optmize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is also able to automatically suggest a strategy for number of classes optimization.The tool is used to classify macroeconomic data that report the most developed countries? import and export. It is possible to classify the countries based on their economic behaviour and use an ad hoc tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation.

Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, cluster interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
6688 A New Evolutionary Algorithm for Cluster Analysis

Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.

Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
6687 Research and Application of Consultative Committee for Space Data Systems Wireless Communications Standards for Spacecraft

Authors: Cuitao Zhang, Xiongwen He

Abstract:

According to the new requirements of the future spacecraft, such as networking, modularization and non-cable, this paper studies the CCSDS wireless communications standards, and focuses on the low data-rate wireless communications for spacecraft monitoring and control. The application fields and advantages of wireless communications are analyzed. Wireless communications technology has significant advantages in reducing the weight of the spacecraft, saving time in spacecraft integration, etc. Based on this technology, a scheme for spacecraft data system is put forward. The corresponding block diagram and key wireless interface design of the spacecraft data system are given. The design proposal of the wireless node and information flow of the spacecraft are also analyzed. The results show that the wireless communications scheme is reasonable and feasible. The wireless communications technology can meet the future spacecraft demands in networking, modularization and non-cable.

Keywords: CCSDS standards, information flow, non-cable, spacecraft, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
6686 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options

Authors: Zeynep İltüzer Samur, Gül Tekin Temur

Abstract:

Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.

Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3083
6685 Totally Integrated Smart Energy System through Data Acquisition via Remote Location

Authors: Muhammad Tahir Qadri, M. Irfan Anis, M. Nawaz Irshad Khan

Abstract:

This paper discusses the approach of real-time controlling of the energy management system using the data acquisition tool of LabVIEW. The main idea of this inspiration was to interface the Station (PC) with the system and publish the data on internet using LabVIEW. In this venture, controlling and switching of 3 phase AC loads are effectively and efficiently done. The phases are also sensed through devices. In case of any failure the attached generator starts functioning automatically. The computer sends command to the system and system respond to the request. The modern feature is to access and control the system world-wide using world wide web (internet). This controlling can be done at any time from anywhere to effectively use the energy especially in developing countries where energy management is a big problem. In this system totally integrated devices are used to operate via remote location.

Keywords: VI-server, Remote Access, Telemetry, Data Acquisition, web server.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
6684 Preservation of Molecular Ozone in a Clathrate Hydrate : Three-Phase (Gas + Liquid + Hydrate) Equilibrium Measurements for O3 + O2 + CO2 + H2O Systems

Authors: Kazutoshi Shishido, Sanehiro Muromachi, Ryo Ohmura

Abstract:

This paper reports the three-phase (gas + liquid + hydrate) equilibrium pressure versus temperature data for a (O3 + O2 + CO2 + H2O) system for developing the hydrate-based technology to preserve ozone, a chemically unstable substance, for various industrial, medical and consumer uses. These data cover the temperature range from 272 K to 277 K, corresponding to pressures from 1.6 MPa to 3.1 MPa, for each of the three different (O3 + O2)-to-CO2 or O2-to-CO2 molar ratios in the gas phase, which are approximately 4 : 6, 5 : 5, respectively. The mole fraction of ozone in the gas phase was ~0.03 , which are the densest ozone fraction to artificially form O3 containing hydrate ever reported in the literature. Based on these data, the formation of hydrate containing high-concentration ozone, as high as 1 mass %, will be expected.

Keywords: Clathrate hydrate, Ozone, Molecule storage, Sterilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
6683 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data

Authors: N. Borjalilu, P. Rabiei, A. Enjoo

Abstract:

Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.

Keywords: F-TOPSIS, fuzzy set, FDM, flight safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
6682 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

Authors: Fengxia Zheng, Shouming Zhong

Abstract:

ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3685
6681 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
6680 The Antibacterial and Anticancer Activity of Marine Actinomycete Strain HP411 Isolated in the Northern Coast of Vietnam

Authors: Huyen T. Pham, Nhue P. Nguyen, Tien Q. Phi, Phuong T. Dang, Hy G. Le

Abstract:

Since the marine environmental conditions are extremely different from the other ones, marine actinomycetes might produce novel bioactive compounds. Therefore, actinomycete strains were screened from marine water and sediment samples collected from the coastal areas of Northern Vietnam. Ninety-nine actinomycete strains were obtained on starch-casein agar media by dilution technique, only seven strains, named HP112, HP12, HP411, HPN11, HP 11, HPT13 and HPX12, showed significant antibacterial activity against both gram-positive and gram-negative bacteria (Bacillus subtilis ATCC 6633, Staphylococcus epidemidis ATCC 12228, Escherichia coli ATCC 11105). Further studies were carried out with the most active HP411 strain against Candida albicans ATCC 10231. This strain could grow rapidly on starch casein agar and other media with high salt containing 7-10% NaCl at 28-30oC. Spore-chain of HP411 showed an elongated and circular shape with 10 to 30 spores/chain. Identification of the strain was carried out by employing the taxonomical studies including the 16S rRNA sequence. Based on phylogenetic and phenotypic evidence it is proposed that HP411 to be belongs to species Streptomyces variabilis. The potent of the crude extract of fermentation broth of HP411 that are effective against wide range of pathogens: both grampositive, gram-negative and fungi. Further studies revealed that the crude extract HP411 could obtain the anticancer activity for cancer cell lines: Hep-G2 (liver cancer cell line); RD (cardiac and skeletal muscle letters cell line); FL (membrane of the uterus cancer cell line). However, the actinomycetes from marine ecosystem will be useful for the discovery of new drugs in the future.

Keywords: Marine actinomycetes, antibacterial, anticancer, Streptomyces variabilis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3613
6679 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
6678 Visualization of Sediment Thickness Variation for Sea Bed Logging using Spline Interpolation

Authors: Hanita Daud, Noorhana Yahya, Vijanth Sagayan, Muizuddin Talib

Abstract:

This paper discusses on the use of Spline Interpolation and Mean Square Error (MSE) as tools to process data acquired from the developed simulator that shall replicate sea bed logging environment. Sea bed logging (SBL) is a new technique that uses marine controlled source electromagnetic (CSEM) sounding technique and is proven to be very successful in detecting and characterizing hydrocarbon reservoirs in deep water area by using resistivity contrasts. It uses very low frequency of 0.1Hz to 10 Hz to obtain greater wavelength. In this work the in house built simulator was used and was provided with predefined parameters and the transmitted frequency was varied for sediment thickness of 1000m to 4000m for environment with and without hydrocarbon. From series of simulations, synthetics data were generated. These data were interpolated using Spline interpolation technique (degree of three) and mean square error (MSE) were calculated between original data and interpolated data. Comparisons were made by studying the trends and relationship between frequency and sediment thickness based on the MSE calculated. It was found that the MSE was on increasing trends in the set up that has the presence of hydrocarbon in the setting than the one without. The MSE was also on decreasing trends as sediment thickness was increased and with higher transmitted frequency.

Keywords: Spline Interpolation, Mean Square Error, Sea Bed Logging, Controlled Source Electromagnetic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
6677 The Consumer Private Space: What is and How it can be Approached without Affecting the Consumer's Privacy

Authors: Calin Veghes

Abstract:

The concept of privacy, seen in connection to the consumer's private space and personalization, has recently gained a higher importance as a consequence of the increasing marketing efforts of the organizations based on the capturing, processing and usage of consumer-s personal data.Paper intends to provide a definition of the consumer-s private space based on the types of personal data the consumer is willing to disclose, to assess the attitude toward personalization and to identify the means preferred by consumers to control their personal data and defend their private space. Several implications generated through the definition of the consumer-s private space are identified and weighted from both the consumers- and organizations- perspectives.

Keywords: Consumer private space, personalization, privacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
6676 Quantifying the Methods of Monitoring Timers in Electric Water Heater for Grid Balancing on Demand Side Management: A Systematic Mapping Review

Authors: Yamamah Abdulrazaq, Lahieb A. Abrahim, Samuel E. Davies, Iain Shewring

Abstract:

Electric water heater (EWH) is a powerful appliance that uses electricity in residential, commercial, and industrial settings, and the ability to control them properly will result in cost savings and the prevention of blackouts on the national grid. This article discusses the usage of timers in EWH control strategies for demand-side management (DSM). To the authors' knowledge, there is no systematic mapping review focusing on the utilization of EWH control strategies in DSM has yet been conducted. Consequently, the purpose of this research is to identify and examine main papers exploring EWH procedures in DSM by quantifying and categorizing information with regard to publication year and source, kind of methods, and source of data for monitoring control techniques. In order to answer the research questions, a total of 31 publications published between 1999 and 2023 were selected depending on specific inclusion and exclusion criteria. The data indicate that direct load control (DLC) has been somewhat more prevalent than indirect load control (ILC). Additionally, the mix method is much lower than the other techniques, and the proportion of real-time data (RTD) to non-real-time data (NRTD) is about equal.

Keywords: Demand side management, direct load control, electric water heater, indirect load control, non-real-time data, real time data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111
6675 VaR Forecasting in Times of Increased Volatility

Authors: Ivo Jánský, Milan Rippel

Abstract:

The paper evaluates several hundred one-day-ahead VaR forecasting models in the time period between the years 2004 and 2009 on data from six world stock indices - DJI, GSPC, IXIC, FTSE, GDAXI and N225. The models model mean using the ARMA processes with up to two lags and variance with one of GARCH, EGARCH or TARCH processes with up to two lags. The models are estimated on the data from the in-sample period and their forecasting accuracy is evaluated on the out-of-sample data, which are more volatile. The main aim of the paper is to test whether a model estimated on data with lower volatility can be used in periods with higher volatility. The evaluation is based on the conditional coverage test and is performed on each stock index separately. The primary result of the paper is that the volatility is best modelled using a GARCH process and that an ARMA process pattern cannot be found in analyzed time series.

Keywords: VaR, risk analysis, conditional volatility, garch, egarch, tarch, moving average process, autoregressive process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
6674 A Weighted Sum Technique for the Joint Optimization of Performance and Power Consumption in Data Centers

Authors: Samee Ullah Khan, C.Ardil

Abstract:

With data centers, end-users can realize the pervasiveness of services that will be one day the cornerstone of our lives. However, data centers are often classified as computing systems that consume the most amounts of power. To circumvent such a problem, we propose a self-adaptive weighted sum methodology that jointly optimizes the performance and power consumption of any given data center. Compared to traditional methodologies for multi-objective optimization problems, the proposed self-adaptive weighted sum technique does not rely on a systematical change of weights during the optimization procedure. The proposed technique is compared with the greedy and LR heuristics for large-scale problems, and the optimal solution for small-scale problems implemented in LINDO. the experimental results revealed that the proposed selfadaptive weighted sum technique outperforms both of the heuristics and projects a competitive performance compared to the optimal solution.

Keywords: Meta-heuristics, distributed systems, adaptive methods, resource allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834