Search results for: Smart Recursive Load Flow.
3211 Application of Homotopy Perturbation Method to Solve Steady Flow of Walter B Fluid A Vertical Channel In Porous Media
Authors: A.Memari
Abstract:
In this article, a simulation method called the Homotopy Perturbation Method (HPM) is employed in the steady flow of a Walter's B' fluid in a vertical channel with porous wall. We employed Homotopy Perturbation Method to derive solution of a nonlinear form of equation obtained from exerting similarity transforming to the ordinary differential equation gained from continuity and momentum equations of this kind of flow. The results obtained from the Homotopy Perturbation Method are then compared with those from the Runge–Kutta method in order to verify the accuracy of the proposed method. The results show that the Homotopy Perturbation Method can achieve good results in predicting the solution of such problems. Ultimately we use this solution to obtain the other terms of velocities and physical discussion about it.
Keywords: Steady flow; Walter's B' Fluid;, vertical channel;porous media, Homotopy Perturbation Method (HPM), Numerical Solution (NS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19793210 Accurate Optical Flow Based on Spatiotemporal Gradient Constancy Assumption
Authors: Adam Rabcewicz
Abstract:
Variational methods for optical flow estimation are known for their excellent performance. The method proposed by Brox et al. [5] exemplifies the strength of that framework. It combines several concepts into single energy functional that is then minimized according to clear numerical procedure. In this paper we propose a modification of that algorithm starting from the spatiotemporal gradient constancy assumption. The numerical scheme allows to establish the connection between our model and the CLG(H) method introduced in [18]. Experimental evaluation carried out on synthetic sequences shows the significant superiority of the spatial variant of the proposed method. The comparison between methods for the realworld sequence is also enclosed.Keywords: optical flow, variational methods, gradient constancy assumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21803209 GSA-Based Design of Dual Proportional Integral Load Frequency Controllers for Nonlinear Hydrothermal Power System
Authors: M. Elsisi, M. Soliman, M. A. S. Aboelela, W. Mansour
Abstract:
This paper considers the design of Dual Proportional- Integral (DPI) Load Frequency Control (LFC), using gravitational search algorithm (GSA). The design is carried out for nonlinear hydrothermal power system where generation rate constraint (GRC) and governor dead band are considered. Furthermore, time delays imposed by governor-turbine, thermodynamic process, and communication channels are investigated. GSA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. GSA-based DPI has been compared to Ziegler- Nichols based PI, and Genetic Algorithm (GA) based PI controllers in order to demonstrate the superior efficiency of the proposed design. Simulation results are carried for a wide range of operating conditions and system parameters variations.Keywords: Gravitational Search Algorithm (GSA), Load Frequency Control (LFC), Dual Proportional-Integral (DPI) controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19853208 Optimal Route Policy in Air Traffic Control with Competing Airlines
Authors: Siliang Wang, Minghui Wang
Abstract:
This work proposes a novel market-based air traffic flow control model considering competitive airlines in air traffic network. In the flow model, an agent based framework for resources (link/time pair) pricing is described. Resource agent and auctioneer for groups of resources are also introduced to simulate the flow management in Air Traffic Control (ATC). Secondly, the distributed group pricing algorithm is introduced, which efficiently reflect the competitive nature of the airline industry. Resources in the system are grouped according to the degree of interaction, and each auctioneer adjust s the price of one group of resources respectively until the excess demand of resources becomes zero when the demand and supply of resources of the system changes. Numerical simulation results show the feasibility of solving the air traffic flow control problem using market mechanism and pricing algorithms on the air traffic network.
Keywords: Air traffic control, Nonlinear programming, Marketmechanism, Route policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18223207 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle
Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi
Abstract:
The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.
Keywords: RANS Simulation, Multipurpose Amphibious Vehicle, Viscous Flow Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29623206 Comparison of the DC/DC-Converters for Fuel Cell Applications
Authors: Oleksandr Krykunov
Abstract:
The source voltage of high-power fuel cell shows strong load dependence at comparatively low voltage levels. In order to provide the voltage of 750V on the DC-link for feeding electrical energy into the mains via a three phase inverter a step-up converter with a large step-up ratio is required. The output voltage of this DC/DC-converter must be stabile during variations of the load current and the voltage of the fuel cell. This paper presents the methods and results of the calculation of the efficiency and the expense for the realization for the circuits of the DC/DC-converter that meet these requirements.Keywords: DC/DC-converter, calculation, efficiency, fuel cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25843205 Design and Development of iLON Smart Server Based Remote Monitoring System for Induction Motors
Authors: G. S. Ayyappan, M. Raja Raghavan, R. Poonthalir, Kota Srinivas, B. Ramesh Babu
Abstract:
Electrical energy demand in the World and particularly in India, is increasing drastically more than its production over a period of time. In order to reduce the demand-supply gap, conserving energy becomes mandatory. Induction motors are the main driving force in the industries and contributes to about half of the total plant energy consumption. By effective monitoring and control of induction motors, huge electricity can be saved. This paper deals about the design and development of such a system, which employs iLON Smart Server and motor performance monitoring nodes. These nodes will monitor the performance of induction motors on-line, on-site and in-situ in the industries. The node monitors the performance of motors by simply measuring the electrical power input and motor shaft speed; coupled to genetic algorithm to estimate motor efficiency. The nodes are connected to the iLON Server through RS485 network. The web server collects the motor performance data from nodes, displays online, logs periodically, analyzes, alerts, and generates reports. The system could be effectively used to operate the motor around its Best Operating Point (BOP) as well as to perform the Life Cycle Assessment of Induction motors used in the industries in continuous operation.
Keywords: Best operating point, iLON smart server, motor asset management, LONWORKS, Modbus RTU, motor performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7213204 Effects of Mach Number and Angle of Attack on Mass Flow Rates and Entropy Gain in a Supersonic Inlet
Authors: Taher Fodeibou, Ziaul Huque, Jenny Galvis
Abstract:
A parametric study of a mixed-compression supersonic inlet is performed and reported. The effects of inlet Mach Numbers, varying from 4 to 10, and angle of attack, varying from 0 to 10, are reported for a constant inlet dynamic pressure. The paper looked at the variations of mass flow rates through the inlet, gain in entropy through the inlet, and the angles of the external oblique shocks. The mass flow rates were found to decrease monotonically with Mach numbers and increase with angle of attacks. On the other hand the entropy gain through the inlet increased with increasing Mach number and angle of attack. The variation in static pressure was found to be identical from the inlet throat to the exit for Mach number values higher than 6.Keywords: Angle of attack, entropy gain, mass flow rates, supersonic inlets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26103203 Application of De-Laval Nozzle Transonic Flow Field Computation Approaches
Abstract:
A supersonic expansion cannot be achieved within a convergent-divergent nozzle if the flow velocity does not reach that of the sound at the throat. The computation of the flow field characteristics at the throat is thus essential to the nozzle developed thrust value and therefore to the aircraft or rocket it propels. Several approaches were developed in order to describe the transonic expansion, which takes place through the throat of a De-Laval convergent-divergent nozzle. They all allow reaching good results but showing a major shortcoming represented by their inability to describe the transonic flow field for nozzles having a small throat radius. The approach initially developed by Kliegel & Levine uses the velocity series development in terms of the normalized throat radius added to unity instead of solely the normalized throat radius or the traditional small disturbances theory approach. The present investigation carries out the application of these three approaches for different throat radiuses of curvature. The method using the normalized throat radius added to unity shows better results when applied to geometries integrating small throat radiuses.
Keywords: De-Laval nozzles, transonic calculations, transonic flow, supersonic nozzle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32863202 Understanding Walkability in the Libyan Urban Space: Policies, Perceptions and Smart Design for Sustainable Tripoli
Authors: A. Abdulla Khairi Mohamed, Mohamed Gamal Abdelmonem, Gehan Selim
Abstract:
Walkability in civic and public spaces in Libyan cities is challenging due to the lack of accessibility design, informal merging into car traffic, and the general absence of adequate urban and space planning. The lack of accessible and pedestrian-friendly public spaces in Libyan cities has emerged as a major concern for the government if it is to develop smart and sustainable spaces for the 21st century. A walkable urban space has become a driver for urban development and redistribution of land use to ensure pedestrian and walkable routes between sites of living and workplaces. The characteristics of urban open space in the city centre play a main role in attracting people to walk when attending their daily needs, recreation and daily sports. There is significant gap in the understanding of perceptions, feasibility and capabilities of Libyan urban space to accommodate enhance or support the smart design of a walkable pedestrian-friendly environment that is safe and accessible to everyone. The paper aims to undertake observations of walkability and walkable space in the city of Tripoli as a benchmark for Libyan cities; assess the validity and consistency of the seven principal aspects of smart design, safety, accessibility and 51 factors that affect the walkability in open urban space in Tripoli, through the analysis of 10 local urban spaces experts (town planner, architect, transport engineer and urban designer); and explore user groups’ perceptions of accessibility in walkable spaces in Libyan cities through questionnaires. The study sampled 200 respondents in 2015-16. The results of this study are useful for urban planning, to classify the walkable urban space elements which affect to improve the level of walkability in the Libyan cities and create sustainable and liveable urban spaces.
Keywords: Walkability, sustainability, liveability, accessibility, safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14073201 Heat and Mass Transfer for Viscous Flow with Radiation Effect past a Nonlinearly Stretching Sheet
Authors: Kai-Long Hsiao
Abstract:
In this study, an analysis has been performed for heat and mass transfer of a steady laminar boundary-layer flow of a viscous flow past a nonlinearly stretching sheet. Parameters n, Ec, k0, Sc represent the dominance of the nonlinearly effect, viscous effect, radiation effect and mass transfer effect which have presented in governing equations, respectively. The similarity transformation and the finite-difference method have been used to analyze the present problem.Keywords: Nonlinearly stretching sheet, heat and mass transfer, radiation effect, viscous effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15063200 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI
Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.Keywords: Contex-sensitive, CFI, binary analysis, code reuse attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9433199 The Flotation Device Designed to Treat Phosphate Rock
Authors: Z. Q. Zhang, Y. Zhang, D. L. Li
Abstract:
To overcome the some shortcomings associated with traditional flotation machines and columns in collophanite flotation, a flotation device was designed and fabricated in the laboratory. A multi-impeller pump with same function as a mechanical cell was used instead of the injection sparger and circulation pump in column flotation unit. The influence of main operational parameters of the device like feed flow rate, air flow rate and impellers’ speed on collophanite flotation was analyzed. Experiment results indicate that the influence of the operational parameters were significant on flotation recovery and grade of phosphate concentrate. The best operating conditions of the device were: feed flow rate 0.62 L/min, air flow rate 6.67 L/min and impellers speed 900 rpm. At these conditions, a phosphate concentrate assaying about 30.5% P2O5 and 1% MgO with a P2O5 recovery of about 81% was obtained from a Yuan'an phosphate ore sample containing about 22.30% P2O5 and 3.2% MgO.
Keywords: Collophanite flotation, flotation columns, flotation machines, multi-impeller pump.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8143198 Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries
Authors: Somkid Amornsamankul, Benchawan Wiwatanapataphee, Yong Hong Wu, Yongwimon Lenbury
Abstract:
In this paper, we study the pulsatile flow of blood through stenotic arteries. The inner layer of arterial walls is modeled as a porous medium and human blood is assumed as an incompressible fluid. A numerical algorithm based on the finite element method is developed to simulate the blood flow through both the lumen region and the porous wall. The algorithm is then applied to study the flow behaviour and to investigate the significance of the non-Newtonian effect.
Keywords: Stenotic artery, finite element, porous arterial wall, non-Newtonian model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22253197 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect
Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop
Abstract:
In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.
Keywords: Heat transfer, Radiation effect, Shrinking sheet Unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19543196 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling
Authors: Md Abdullah Al Faruque, Ram Balachandar
Abstract:
Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.
Keywords: Open channel flow, Reynolds Number, roughness, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10813195 Numerical Studies on Flow Field Characteristics of Cavity Based Scramjet Combustors
Authors: Rakesh Arasu, Sasitharan Ambicapathy, Sivaraj Ponnusamy, Mohanraj Murugesan, V. R. Sanal Kumar
Abstract:
The flow field within the combustor of scramjet engine is very complex and poses a considerable challenge in the design and development of a supersonic combustor with an optimized geometry. In this paper comprehensive numerical studies on flow field characteristics of different cavity based scramjet combustors with transverse injection of hydrogen have been carried out for both non-reacting and reacting flows. The numerical studies have been carried out using a validated 2D unsteady, density based 1st-order implicit k-omega turbulence model with multi-component finite rate reacting species. The results show a wide variety of flow features resulting from the interactions between the injector flows, shock waves, boundary layers, and cavity flows. We conjectured that an optimized cavity is a good choice to stabilize the flame in the hypersonic flow, and it generates a recirculation zone in the scramjet combustor. We comprehended that the cavity based scramjet combustors having a bearing on the source of disturbance for the transverse jet oscillation, fuel/air mixing enhancement, and flameholding improvement. We concluded that cavity shape with backward facing step and 45o forward ramp is a good choice to get higher temperatures at the exit compared to other four models of scramjet combustors considered in this study.
Keywords: Flame holding, Hypersonic flow, Scramjet combustor, Supersonic combustor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32243194 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization
Authors: Mohamed Sanad, Noha Hassan
Abstract:
A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.
Keywords: Base station antenna, multi-beam antenna, smart antenna, vertical sectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20263193 Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation
Authors: Barenten Suciu
Abstract:
In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature.
Keywords: One degree of freedom vibration, inerter, parallel connection, load-type excitation, displacement-type excitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8683192 X-Ray Intensity Measurement Using Frequency Output Sensor for Computed Tomography
Authors: R. M. Siddiqui, D. Z. Moghaddam, T. R. Turlapati, S. H. Khan, I. Ul Ahad
Abstract:
Quality of 2D and 3D cross-sectional images produce by Computed Tomography primarily depend upon the degree of precision of primary and secondary X-Ray intensity detection. Traditional method of primary intensity detection is apt to errors. Recently the X-Ray intensity measurement system along with smart X-Ray sensors is developed by our group which is able to detect primary X-Ray intensity unerringly. In this study a new smart X-Ray sensor is developed using Light-to-Frequency converter TSL230 from Texas Instruments which has numerous advantages in terms of noiseless data acquisition and transmission. TSL230 construction is based on a silicon photodiode which converts incoming X-Ray radiation into the proportional current signal. A current to frequency converter is attached to this photodiode on a single monolithic CMOS integrated circuit which provides proportional frequency count to incoming current signal in the form of the pulse train. The frequency count is delivered to the center of PICDEM FS USB board with PIC18F4550 microcontroller mounted on it. With highly compact electronic hardware, this Demo Board efficiently read the smart sensor output data. The frequency output approaches overcome nonlinear behavior of sensors with analog output thus un-attenuated X-Ray intensities could be measured precisely and better normalization could be acquired in order to attain high resolution.Keywords: Computed tomography, detector technology, X-Ray intensity measurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26093191 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading
Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali
Abstract:
Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.Keywords: Deflection profiles, foamed concrete, load-strain relationships, precast foamed concrete sandwich panel, slenderness ratio, vertical in-plane shear strength capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26483190 Bacteria Flora in the Gut and Respiratory Organs of Clarias gariepinus in Fresh and Brackish Water Habitats of Ondo State, South/West Nigeria
Authors: Nelson R. Osungbemiro, Rafiu O. Sanni, Rotimi F. Olaniyan, Abayomi O. Olajuyigbe
Abstract:
Bacteria flora of Clarias gariepinus collected from two natural habitats namely Owena River (freshwater) and Igbokoda lagoon (brackish water) were examined using standard microbiological procedures. Thirteen bacterial species were identified. The result indicated that from the identified bacteria isolated, Vibrio sp, Proteus sp. Shigella sp. and E. coli were present in both habitats (fresh and brackish waters). Others were habitat-selective such as Salmonella sp., Pseudomonas sp, Enterococcus sp, Staphylococcus sp. that were found only in freshwater habitat. While Branhamella sp, Streptococcus sp. and Micrococcus sp. were found in brackish water habitat. Bacteria load from Owena river (freshwater) was found to be the highest load recorded at 6.21 x 104cfu. T-test analysis also revealed that there was a marked significant difference between bacterial load in guts of sampled Clarias from fresh water and brackish water habitats.
Keywords: Bacteria flora, gut, Clarias gariepinus, Owena river
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27283189 Numerical Investigation of Flow Patterns and Thermal Comfort in Air-Conditioned Lecture Rooms
Authors: Taher M. Abou-deif, Mahmoud A. Fouad, Essam E. Khalil
Abstract:
The present paper was concerned primarily with the analysis, simulation of the air flow and thermal patterns in a lecture room. The paper is devoted to numerically investigate the influence of location and number of ventilation and air conditioning supply and extracts openings on air flow properties in a lecture room. The work focuses on air flow patterns, thermal behaviour in lecture room where large number of students. The effectiveness of an air flow system is commonly assessed by the successful removal of sensible and latent loads from occupants with additional of attaining air pollutant at a prescribed level to attain the human thermal comfort conditions and to improve the indoor air quality; this is the main target during the present paper. The study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations in addition to standard k – ε model equations for turbulence closure. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical and experimental results. Good agreement is found among both predictions.Keywords: Air Conditioning, CFD, Lecture Rooms, Thermal Comfort
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22263188 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller
Authors: K. Boumediene, S. E. Belhenniche
Abstract:
This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.Keywords: propeller flow, CFD simulation, hydrodynamic performance, RANS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29163187 Adaptive Bidirectional Flow for Image Interpolation and Enhancement
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (“jaggies") along the tangent directions. In order to preserve image features such as edges, corners and textures, the nonlinear diffusion coefficients are locally adjusted according to the directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directional derivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15383186 Effects of Inlet Distorted Flows on the Performance of an Axial Compressor
Authors: Asad Islam, Khalid Parvez
Abstract:
Compressor fans in modern aircraft engines are of considerate importance, as they provide majority of thrust required by the aircraft. Their challenging environment is frequently subjected to non-uniform inflow conditions. These conditions could be either due to the flight operating requirements such as take-off and landing, wake interference from aircraft fuselage or cross-flow wind conditions. So, in highly maneuverable flights regimes of fighter aircrafts affects the overall performance of an engine. Since the flow in compressor of an aircraft application is highly sensitive because of adverse pressure gradient due to different flow orientations of the aircraft. Therefore, it is prone to unstable operations. This paper presents the study that focuses on axial compressor response to inlet flow orientations for the range of angles as 0 to 15 degrees. For this purpose, NASA Rotor-37 was taken and CFD mesh was developed. The compressor characteristics map was generated for the design conditions of pressure ratio of 2.106 with the rotor operating at rotational velocity of 17188.7 rpm using CFD simulating environment of ANSYS-CFX®. The grid study was done to see the effects of mesh upon computational solution. Then, the mesh giving the best results, (when validated with the available experimental NASA’s results); was used for further distortion analysis. The flow in the inlet nozzle was given angle orientations ranging from 0 to 15 degrees. The CFD results are analyzed and discussed with respect to stall margin and flow separations due to induced distortions.Keywords: Angle, ANSYS-CFX®, axial compressor, Bladegen®, CFD, distortions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20123185 Flow Visualization and Characterization of an Artery Model with Stenosis
Authors: Anis S. Shuib, Peter R. Hoskins, William J. Easson
Abstract:
Cardiovascular diseases, principally atherosclerosis, are responsible for 30% of world deaths. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis.It is increasingly recognized that the initiation and progression of disease and the occurrence of clinical events is a complex interplay between the local biomechanical environment and the local vascular biology. The aim of this study is to investigate the flow behavior through a stenosed artery. A physical experiment was performed using an artery model and blood analogue fluid. An axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. The flow field was measured using particle image velocimetry (PIV). Spherical particles with 20μm diameter were seeded in a water-glycerol-NaCl mixture. Steady flow Reynolds numbers are 250. The area of interest is the region after the stenosis where the flow separation occurs. The velocity field was measured and the velocity gradient was investigated. There was high particle concentration in the recirculation zone. High velocity gradient formed immediately after the stenosis throat created a lift force that enhanced particle migration to the flow separation area.
Keywords: Stenosis artery, Biofluid mechanics, PIV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20033184 Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach
Authors: Manish K. Khandelwal, P. Bera, A. Chakrabarti
Abstract:
This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.Keywords: buoyancy ratio, mixed convection, non-Darcy model, thermal non-equilibrium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19583183 Investigation into Behavior of Suspen-Domes in Comparison with Single-Layer Domes
Authors: Behnam Shirkhanghah, Ali Darabadi-Zare, Houshyar Eimani-Kalesar, Babak Pahlevan
Abstract:
Prestressing in structure increases ratio of load-bearing capacity to weight. Suspendomes are single-layer braced domes reinforced with cable and strut. Prestressing of cables alter value and distribution of stress in structure. In this study two configuration, diamatic and lamella domes is selected. Investigated domes have span of 100m with rise-to-span ratios of 0.1, 0.2, and 0.3. Single layer domes loaded under service load combinations according to ISO code. After geometric nonlinear analysis, models are designed with tubular and I-shaped sections then reinforced with cable and strut and converted to suspendomes. Displacements and stresses of some groups of nodes and elements in all of single-layer domes and suspendomes for three load combinations, symmetric snow, asymmetric snow and wind are compared. Variation due to suspending system is investigated. Suspendomes are redesigned and minimum possible weight after addition of cable and strut is obtained.
Keywords: Braced dome, Prestressing, Single-layer, Suspendome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28733182 Thermal Distribution in Axial-Flow Fixed Bed with Flowing Gas
Authors: Kun Lei, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
This paper reported an experimental research of steady-state heat transfer behaviour of a gas flowing through a fixed bed under the different operating conditions. Studies had been carried out in a fixed-bed packed methanol synthesis catalyst percolated by air at appropriate flow rate. Both radial and axial direction temperature distribution had been investigated under the different operating conditions. The effects of operating conditions including the reactor inlet air temperature, the heating pipe temperature and the air flow rate on temperature distribution was investigated and the experimental results showed that a higher inlet air temperature was conducive to uniform temperature distribution in the fixed bed. A large temperature drop existed at the radial direction, and the temperature drop increased with the heating pipe temperature increasing under the experimental conditions; the temperature profile of the vicinity of the heating pipe was strongly affected by the heating pipe temperature. A higher air flow rate can improve the heat transfer in the fixed bed. Based on the thermal distribution, heat transfer models of the fixed bed could be established, and the characteristics of the temperature distribution in the fixed bed could be finely described, that had an important practical significance.Keywords: Thermal distribution, heat transfer, axial-flow, fixed bed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481