Search results for: prediction
216 Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model
Authors: L. K. Singh, Riktesh Srivastava
Abstract:
How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.Keywords: M/M/1, M/G/1, G/M/1, G/G/1, Gateway Servers, Buffer Estimation, Waiting Time, Queuing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937215 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.
Keywords: Karkheh river, log pearson type III, probability distribution, residual sum of squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886214 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834213 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression
Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh
Abstract:
The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.Keywords: Disturbed state concept, hierarchical single surface, failure criterion, high performance concrete, high-strength concrete, nonlinear finite element analysis, polymer concrete, steel fibers, uniaxial compression test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240212 A Grey-Fuzzy Controller for Optimization Technique in Wireless Networks
Authors: Yao-Tien Wang, Hsiang-Fu Yu, Dung Chen Chiou
Abstract:
In wireless and mobile communications, this progress provides opportunities for introducing new standards and improving existing services. Supporting multimedia traffic with wireless networks quality of service (QoS). In this paper, a grey-fuzzy controller for radio resource management (GF-RRM) is presented to maximize the number of the served calls and QoS provision in wireless networks. In a wireless network, the call arrival rate, the call duration and the communication overhead between the base stations and the control center are vague and uncertain. In this paper, we develop a method to predict the cell load and to solve the RRM problem based on the GF-RRM, and support the present facility has been built on the application-level of the wireless networks. The GF-RRM exhibits the better adaptability, fault-tolerant capability and performance than other algorithms. Through simulations, we evaluate the blocking rate, update overhead, and channel acquisition delay time of the proposed method. The results demonstrate our algorithm has the lower blocking rate, less updated overhead, and shorter channel acquisition delay.Keywords: radio resource management, grey prediction, fuzzylogic control, wireless networks, quality of service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718211 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields
Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-xin Wang
Abstract:
The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.
Keywords: Supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings (FW-H) equations, nozzle size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620210 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing
Authors: Reena Murali, David Peter S.
Abstract:
The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies show that upregulation of mRNA because serious diseases like cancer. So designing effective siRNA with good knockdown effects plays an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (%G), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.
Keywords: Artificial Neural Network, Double Stranded RNA, RNA Interference, Short Interfering RNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668209 Experiment and Simulation of Laser Effect on Thermal Field of Porcine Liver
Authors: K.Ting, K. T. Chen, Y. L. Su, C. J. Chang
Abstract:
In medical therapy, laser has been widely used to conduct cosmetic, tumor and other treatments. During the process of laser irradiation, there may be thermal damage caused by excessive laser exposure. Thus, the establishment of a complete thermal analysis model is clinically helpful to physicians in reference data. In this study, porcine liver in place of tissue was subjected to laser irradiation to set up the experimental data considering the explored impact on surface thermal field and thermal damage region under different conditions of power, laser irradiation time, and distance between laser and porcine liver. In the experimental process, the surface temperature distribution of the porcine lever was measured by the infrared thermal imager. In the part of simulation, the bio heat transfer Pennes-s equation was solved by software SYSWELD applying in welding process. The double ellipsoid function as a laser source term is firstly considered in the prediction for surface thermal field and internal tissue damage. The simulation results are compared with the experimental data to validate the mathematical model established here in.
Keywords: laser infrared thermal imager, bio-heat transfer, double ellipsoid function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061208 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws
Authors: Jia-Jang Wu
Abstract:
This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.
Keywords: Torsional vibration, full-size model, scale model, scaling laws.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760207 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification
Authors: Jui P. Hung, Yuan L. Lai, Hui T. You
Abstract:
Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646206 Development of Coronal Field and Solar Wind Components for MHD Interplanetary Simulations
Authors: Ljubomir Nikolic, Larisa Trichtchenko
Abstract:
The connection between solar activity and adverse phenomena in the Earth’s environment that can affect space and ground based technologies has spurred interest in Space Weather (SW) research. A great effort has been put on the development of suitable models that can provide advanced forecast of SW events. With the progress in computational technology, it is becoming possible to develop operational large scale physics based models which can incorporate the most important physical processes and domains of the Sun-Earth system. In order to enhance our SW prediction capabilities we are developing advanced numerical tools. With operational requirements in mind, our goal is to develop a modular simulation framework of propagation of the disturbances from the Sun through interplanetary space to the Earth. Here, we report and discuss on the development of coronal field and solar wind components for a large scale MHD code. The model for these components is based on a potential field source surface model and an empirical Wang-Sheeley-Arge solar wind relation.
Keywords: Space weather, numerical modeling, coronal field, solar wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141205 E-Government Continuance Intention of Media Psychology: Some Insights from Psychographic Characteristics
Authors: Azlina Binti Abu Bakar, Fahmi Zaidi Bin Abdul Razak, Wan Salihin Wong Abdullah
Abstract:
Psychographic is a psychological study of values, attitudes, interests and it is used mostly in prediction, opinion research and social research. This study predicts the influence of performance expectancy, effort expectancy, social influence and facilitating condition on e-government acceptance among Malaysian citizens. The survey responses of 543 e-government users have been validated and analyzed by means of covariance-based Structural Equation Modeling. The findings indicate that e-government acceptance among Malaysian citizens are mainly influenced by performance expectancy (β = 0.66, t = 11.53, p < 0.01) and social influence (β = 0.20, t = 4.23, p < 0.01). Surprisingly, there is no significant effect of facilitating condition and effort expectancy on e-government continuance intention (β = 0.01, t = 0.27, p > 0.05; β = -0.01, t = -0.40, p > 0.05). This study offers government and vendors a frame of reference to analyze citizen’s situation before initiating new innovations. In case of Malaysian e-government technology, adoption strategies should be built around fostering level of citizens’ technological expectation and social influence on e-government usage.
Keywords: Continuance intention, Malaysian citizens, media psychology, structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398204 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498203 Temporal Analysis of Magnetic Nerve Stimulation–Towards Enhanced Systems via Virtualisation
Authors: Stefan M. Goetz, Thomas Weyh, Hans-Georg Herzog
Abstract:
The triumph of inductive neuro-stimulation since its rediscovery in the 1980s has been quite spectacular. In lots of branches ranging from clinical applications to basic research this system is absolutely indispensable. Nevertheless, the basic knowledge about the processes underlying the stimulation effect is still very rough and rarely refined in a quantitative way. This seems to be not only an inexcusable blank spot in biophysics and for stimulation prediction, but also a fundamental hindrance for technological progress. The already very sophisticated devices have reached a stage where further optimization requires better strategies than provided by simple linear membrane models of integrate-and-fire style. Addressing this problem for the first time, we suggest in the following text a way for virtual quantitative analysis of a stimulation system. Concomitantly, this ansatz seems to provide a route towards a better understanding by using nonlinear signal processing and taking the nerve as a filter that is adapted for neuronal magnetic stimulation. The model is compact and easy to adjust. The whole setup behaved very robustly during all performed tests. Exemplarily a recent innovative stimulator design known as cTMS is analyzed and dimensioned with this approach in the following. The results show hitherto unforeseen potentials.
Keywords: Theory of magnetic stimulation, inversion, optimization, high voltage oscillator, TMS, cTMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379202 Evaluation of Settlement of Coastal Embankments Using Finite Elements Method
Authors: Sina Fadaie, Seyed Abolhassan Naeini
Abstract:
Coastal embankments play an important role in coastal structures by reducing the effect of the wave forces and controlling the movement of sediments. Many coastal areas are underlain by weak and compressible soils. Estimation of during construction settlement of coastal embankments is highly important in design and safety control of embankments and appurtenant structures. Accordingly, selecting and establishing of an appropriate model with a reasonable level of complication is one of the challenges for engineers. Although there are advanced models in the literature regarding design of embankments, there is not enough information on the prediction of their associated settlement, particularly in coastal areas having considerable soft soils. Marine engineering study in Iran is important due to the existence of two important coastal areas located in the northern and southern parts of the country. In the present study, the validity of Terzaghi’s consolidation theory has been investigated. In addition, the settlement of these coastal embankments during construction is predicted by using special methods in PLAXIS software by the help of appropriate boundary conditions and soil layers. The results indicate that, for the existing soil condition at the site, some parameters are important to be considered in analysis. Consequently, a model is introduced to estimate the settlement of the embankments in such geotechnical conditions.
Keywords: Consolidation, coastal embankments, settlement, numerical methods, finite elements method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790201 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model
Authors: A. Kablan
Abstract:
The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396200 Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment
Authors: Fares Laouacheria, Said Kechida, Moncef Chabi
Abstract:
The objective of the study was based on the hydrological routing modelling for the continuous monitoring of the hydrological situation in the Moudjar river catchment, especially during floods with Hydrologic Engineering Center–Hydrologic Modelling Systems (HEC-HMS). The HEC-GeoHMS was used to transform data from geographic information system (GIS) to HEC-HMS for delineating and modelling the catchment river in order to estimate the runoff volume, which is used as inputs to the hydrological routing model. Two hydrological routing models were used, namely Muskingum and Muskingum routing models, for conducting this study. In this study, a comparison between the parameters of the Muskingum and Muskingum-Cunge routing models in HEC-HMS was used for modelling flood routing in the Moudjar river catchment and determining the relationship between these parameters and the physical characteristics of the river. The results indicate that the effects of input parameters such as the weighting factor "X" and travel time "K" on the output results are more significant, where the Muskingum routing model was more sensitive to input parameters than the Muskingum-Cunge routing model. This study can contribute to understand and improve the knowledge of the mechanisms of river floods, especially in ungauged river catchments.
Keywords: HEC-HMS, hydrological modelling, Muskingum routing model, Muskingum-Cunge routing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201199 Semantically Enriched Web Usage Mining for Personalization
Authors: Suresh Shirgave, Prakash Kulkarni, José Borges
Abstract:
The continuous growth in the size of the World Wide Web has resulted in intricate Web sites, demanding enhanced user skills and more sophisticated tools to help the Web user to find the desired information. In order to make Web more user friendly, it is necessary to provide personalized services and recommendations to the Web user. For discovering interesting and frequent navigation patterns from Web server logs many Web usage mining techniques have been applied. The recommendation accuracy of usage based techniques can be improved by integrating Web site content and site structure in the personalization process.
Herein, we propose semantically enriched Web Usage Mining method for Personalization (SWUMP), an extension to solely usage based technique. This approach is a combination of the fields of Web Usage Mining and Semantic Web. In the proposed method, we envisage enriching the undirected graph derived from usage data with rich semantic information extracted from the Web pages and the Web site structure. The experimental results show that the SWUMP generates accurate recommendations and is able to achieve 10-20% better accuracy than the solely usage based model. The SWUMP addresses the new item problem inherent to solely usage based techniques.
Keywords: Prediction, Recommendation, Semantic Web Usage Mining, Web Usage Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023198 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube
Authors: Abolfazl Hosseinkhani, Sepehr Sanaye
Abstract:
Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.
Keywords: Vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587197 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB – Technical University of Ostrava
Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík
Abstract:
The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB – Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.
Keywords: Blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991196 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.
Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401195 Modeling of Nitrogen Solubility in Stainless Steel
Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky
Abstract:
Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacements of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600 oC: [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.
Keywords: Solubility, nitrogen, stainless steel, Schaeffler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67194 Management of Air Pollutants from Point Sources
Authors: N. Lokeshwari, G. Srinikethan, V. S. Hegde
Abstract:
Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of the air quality information system is through monitoring, to keep authorities, major polluters and the public informed on the short and long-term changes in air quality, thereby helping to raise awareness. Mathematical models are the best tools available for the prediction of the air quality management. The main objective of the work was to apply a Model that predicts the concentration levels of different pollutants at any instant of time. In this study, distribution of air pollutants concentration such as nitrogen dioxides (NO2), sulphur dioxides (SO2) and total suspended particulates (TSP) of industries are determined by using Gaussian model. Besides that, the effect of wind speed and its direction on the pollutant concentration within the affected area were evaluated. In order to determine the efficiency and percentage of error in the modeling, validation process of data was done. Sampling of air quality was conducted in getting existing air quality around a factory and the concentrations of pollutants in a plume were inversely proportional to wind velocity. The resultant ground level concentrations were then compared to the quality standards to determine if there could be a negative impact on health. This study concludes that concentration of pollutants can be significantly predicted using Gaussian Model. The data base management is developed for the air data of Hubli-Dharwad region.
Keywords: DBMS, NO2, SO2, Wind rose plots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033193 Enhancing the Performance of H.264/AVC in Adaptive Group of Pictures Mode Using Octagon and Square Search Pattern
Authors: S. Sowmyayani, P. Arockia Jansi Rani
Abstract:
This paper integrates Octagon and Square Search pattern (OCTSS) motion estimation algorithm into H.264/AVC (Advanced Video Coding) video codec in Adaptive Group of Pictures (AGOP) mode. AGOP structure is computed based on scene change in the video sequence. Octagon and square search pattern block-based motion estimation method is implemented in inter-prediction process of H.264/AVC. Both these methods reduce bit rate and computational complexity while maintaining the quality of the video sequence respectively. Experiments are conducted for different types of video sequence. The results substantially proved that the bit rate, computation time and PSNR gain achieved by the proposed method is better than the existing H.264/AVC with fixed GOP and AGOP. With a marginal gain in quality of 0.28dB and average gain in bitrate of 132.87kbps, the proposed method reduces the average computation time by 27.31 minutes when compared to the existing state-of-art H.264/AVC video codec.Keywords: Block Distortion Measure, Block Matching Algorithms, H.264/AVC, Motion estimation, Search patterns, Shot cut detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732192 Numerical Study of Steel Structures Responses to External Explosions
Authors: Mohammad Abdallah
Abstract:
Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.
Keywords: Steel structure, blast load, terrorist attacks, charge weight, damage level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776191 The Relationship between Conceptual Organizational Culture and the Level of Tolerance in Employees
Authors: M. Sadoughi, R. Ehsani
Abstract:
The aim of the present study is examining the relationship between conceptual organizational culture and the level of tolerance in employees of Islamic Azad University of Shahre Ghods. This research is a correlational and analytic-descriptive one. The samples included 144 individuals. A 24-item standard questionnaire of organizational culture by Cameron and Queen was used in this study. This questionnaire has six criteria and each criterion includes four items that each item indicates one cultural dimension. Reliability coefficient of this questionnaire was normed using Cronbach's alpha of 0.91. Also, the 25-item questionnaire of tolerance by Conor and Davidson was used. This questionnaire is in a five-degree Likert scale form. It has seven criteria and is designed to measure the power of coping with pressure and threat. It has the needed content reliability and its reliability coefficient is normed using Cronbach's alpha of 0.87. Data were analyzed using Pearson correlation coefficient and multivariable regression. The results showed among various dimensions of organizational culture, there is a positive significant relationship between three dimensions (family, adhocracy, bureaucracy) and tolerance, there is a negative significant relationship between dimension of market and tolerance and components of organizational culture have the power of prediction and explaining the tolerance. In this explanation, the component of family is the most effective and the best predictor of tolerance.
Keywords: Adhocracy, bureaucracy, organizational culture, tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032190 On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332189 Numerical Investigation of Non-Newtonians Fluids Flows between Two Rotating Cylinders Using Lattice Boltzmann Method
Authors: S. Khali, R. Nebbali, K. Bouhadef
Abstract:
A numerical investigation is performed for non Newtonian fluids flow between two concentric cylinders. The D2Q9 lattice Boltzmann model developed from the Bhatangar-Gross-Krook (LBGK) approximation is used to obtain the flow field for fluids obeying to the power-law model. The inner and outer cylinders rotate in the same and the opposite direction while the end walls are maintained at rest. The combined effects of the Reynolds number (Re) of the inner and outer cylinders, the radius ratio (η) as well as the power-law index (n) on the flow characteristics are analyzed for an annular space of a finite aspect ratio (Γ). Two flow modes are obtained: a primary mode (laminar stable regime) and a secondary mode (laminar unstable regime). The so obtained flow structures are different from one mode to another. The transition critical Reynolds number Rec from the primary to the secondary mode is analyzed for the co-courant and counter-courant flows. This critical value increases as n increases. The prediction of the swirling flow of non Newtonians fluids in axisymmetric geometries is shown in the present work.
Keywords: Taylor-Couette flows, non Newtonian fluid, Lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731188 Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique
Authors: Masoud Sadeghian, Alireza Fatehi
Abstract:
One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.Keywords: Cement rotary kiln, nonlinear identification, Locally Linear Neuro-Fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026187 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database
Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala
Abstract:
This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.
Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548