Search results for: Additive fuzzy system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9109

Search results for: Additive fuzzy system

8299 Matrix Converter Fed Brushless DC Motor Using Field Programmable Gate Array

Authors: P. Subha Karuvelam, M. Rajaram

Abstract:

Brushless DC motors (BLDC) are widely used in industrial areas. The BLDC motors are driven either by indirect ACAC converters or by direct AC-AC converters. Direct AC-AC converters i.e. matrix converters are used in this paper to drive the three phase BLDC motor and it eliminates the bulky DC link energy storage element. A matrix converter converts the AC power supply to an AC voltage of variable amplitude and variable frequency. A control technique is designed to generate the switching pulses for the three phase matrix converter. For the control of speed of the BLDC motor a separate PI controller and Fuzzy Logic Controller (FLC) are designed and a hysteresis current controller is also designed for the control of motor torque. The control schemes are designed and tested separately. The simulation results of both the schemes are compared and contrasted in this paper. The results show that the fuzzy logic control scheme outperforms the PI control scheme in terms of dynamic performance of the BLDC motor. Simulation results are validated with the experimental results.

Keywords: Fuzzy logic controller, matrix converter, permanent magnet brushless DC motor, PI controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
8298 Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm

Authors: R. Srinivasa Rao

Abstract:

This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9 and 34 bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.

Keywords: Distribution systems, Capacitor allocation, Loss reduction, Fuzzy, PGSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
8297 Influence of Bentonite Additive on Bitumen and Asphalt Mixture Properties

Authors: Ziari Hassan, Divandari Hassan, Babagoli Rezvan, Akbari Ali

Abstract:

Asphalt surfaces are exposed to various weather conditions and dynamic loading caused by passing trucks and vehicles. In such situations, asphalt cement shows so different rheological-mechanical behavior. If asphalt cement isn-t compatible enough, asphalt layer will be damaged immediately and expensive repairing procedures should be performed then. To overcome this problem, researchers study on mechanical improved asphalt cement. In this study, bentonite was used in order to modify bitumen characteristics and the modified bitumen's characteristics were investigated by asphalt cement tests. Then, the optimal bitumen content in various compounds was determined and asphalt samples with different contents of additives were prepared and tested. Results show using this kind of additive not only has caused improvement in bitumen mechanical properties, but also improvement in Marshall Parameters was achieved.

Keywords: Asphalt mixture, Bentonite, Modified bitumen, Performance characteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3914
8296 TOPSIS Method for Supplier Selection Problem

Authors: Omid Jadidi, Fatemeh Firouzi, Enzo Bagliery

Abstract:

Supplier selection, in real situation, is affected by several qualitative and quantitative factors and is one of the most important activities of purchasing department. Since at the time of evaluating suppliers against the criteria or factors, decision makers (DMS) do not have precise, exact and complete information, supplier selection becomes more difficult. In this case, Grey theory helps us to deal with this problem of uncertainty. Here, we apply Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method to evaluate and select the best supplier by using interval fuzzy numbers. Through this article, we compare TOPSIS with some other approaches and afterward demonstrate that the concept of TOPSIS is very important for ranking and selecting right supplier.

Keywords: TOPSIS, fuzzy number, MADM, Supplier selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13010
8295 Defuzzification of Periodic Membership Function on Circular Coordinates

Authors: Takashi Mitsuishi, Koji Saigusa

Abstract:

This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. Proposed methods in this paper remove complicatedness concerning domain of periodic membership function from defuzzification in fuzzy approximate reasoning. Defuzzification on circular polar coordinates is also proposed.

Keywords: Defuzzification, periodic membership function, polar coordinates transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
8294 Turbine Follower Control Strategy Design Based on Developed FFPP Model

Authors: Ali Ghaffari, Mansour Nikkhah Bahrami, Hesam Parsa

Abstract:

In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.

Keywords: Attemperator, Evolutionary algorithms, Fossil fuelled power plant (FFPP), Fuzzy set theory, Gain scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
8293 A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Jr., Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain context where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ELH-ARAS). Within the ELH-ARAS approach, the decision maker (DMs) can diagnose the results (the ranking of the alternatives) in a decomposed style i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e., the collective final results of all experts are able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ELH-ARAS technique makes it easier for decision-makers to understand the results. Finally, an MCGDM case study is given to illustrate the proposed approach.

Keywords: Additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 372
8292 Analyzing Artificial Emotion in Game Characters Using Soft Computing

Authors: Musbah M. Aqel, P. K. Mahanti, Soumya Banerjee

Abstract:

This paper describes a simulation model for analyzing artificial emotion injected to design the game characters. Most of the game storyboard is interactive in nature and the virtual characters of the game are equipped with an individual personality and dynamic emotion value which is similar to real life emotion and behavior. The uncertainty in real expression, mood and behavior is also exhibited in game paradigm and this is focused in the present paper through a fuzzy logic based agent and storyboard. Subsequently, a pheromone distribution or labeling is presented mimicking the behavior of social insects.

Keywords: Artificial Emotion, Fuzzy logic, Game character, Pheromone label

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
8291 Stabilization of a New Configurable Two- Wheeled Machine Using a PD-PID and a Hybrid FL Control Strategies: A Comparative Study

Authors: M. Almeshal, M. O. Tokhi, K. M. Goher

Abstract:

A novel design of two-wheeled robotic vehicle with moving payload is presented in this paper. A mathematical model describing the vehicle dynamics is derived and simulated in Matlab Simulink environment. Two control strategies were developed to stabilise the vehicle in the upright position. A robust Proportional- Integral-Derivative (PID) control strategy has been implemented and initially tested to measure the system performance, while the second control strategy is to use a hybrid fuzzy logic controller (FLC). The results are given on a comparative basis for the system performance in terms of disturbance rejection, control algorithms robustness as well as the control effort in terms of input torque.

Keywords: double inverted pendulum, modelling, robust control, simulation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
8290 Drowsiness Warning System Using Artificial Intelligence

Authors: Nidhi Sharma, V. K. Banga

Abstract:

Nowadays, driving support systems, such as car navigation systems, are getting common, and they support drivers in several aspects. It is important for driving support systems to detect status of driver's consciousness. Particularly, detecting driver's drowsiness could prevent drivers from collisions caused by drowsy driving. In this paper, we discuss the various artificial detection methods for detecting driver's drowsiness processing technique. This system is based on facial images analysis for warning the driver of drowsiness or in attention to prevent traffic accidents.

Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-FelixModel, Bailey-Basili Model, Doty Model, GA Based Model, GeneticAlgorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3722
8289 Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture

Authors: Ghada Elshafei, Abdelazim Negm

Abstract:

Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Keywords: Green architecture/building, technologies, optimization, strategies, fuzzy techniques and models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
8288 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor

Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang

Abstract:

A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.

Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4049
8287 Variable Guard Channels for Efficient Traffic Management

Authors: G. M. Mir, N. A. Shah, Moinuddin

Abstract:

Guard channels improve the probability of successful handoffs by reserving a number of channels exclusively for handoffs. This concept has the risk of underutilization of radio spectrum due to the fact that fewer channels are granted to originating calls even if these guard channels are not always used, when originating calls are starving for the want of channels. The penalty is the reduction of total carried traffic. The optimum number of guard channels can help reduce this problem. This paper presents fuzzy logic based guard channel scheme wherein guard channels are reorganized on the basis of traffic density, so that guard channels are provided on need basis. This will help in incorporating more originating calls and hence high throughput of the radio spectrum

Keywords: Free channels, fuzzy logic, guard channels, Handoff

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
8286 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process

Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse

Abstract:

Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.

Keywords: Additive manufacturing, decision-makings, environmental impact, predictive models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
8285 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
8284 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: Bayesian, Forecast, Stock, BART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
8283 Fuzzy Optimization in Metabolic Systems

Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu

Abstract:

The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.

Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
8282 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: Vehicle auto-parking, parking space detection, parking path tracking, intelligent fuzzy controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
8281 Classification of Soil Aptness to Establish of Panicum virgatum in Mississippi using Sensitivity Analysis and GIS

Authors: Eduardo F. Arias, William Cooke III, Zhaofei Fan, William Kingery

Abstract:

During the last decade Panicum virgatum, known as Switchgrass, has been broadly studied because of its remarkable attributes as a substitute pasture and as a functional biofuel source. The objective of this investigation was to establish soil suitability for Switchgrass in the State of Mississippi. A linear weighted additive model was developed to forecast soil suitability. Multicriteria analysis and Sensitivity analysis were utilized to adjust and optimize the model. The model was fit using seven years of field data associated with soils characteristics collected from Natural Resources Conservation System - United States Department of Agriculture (NRCS-USDA). The best model was selected by correlating calculated biomass yield with each model's soils-based output for Switchgrass suitability. Coefficient of determination (r2) was the decisive factor used to establish the 'best' soil suitability model. Coefficients associated with the 'best' model were implemented within a Geographic Information System (GIS) to create a map of relative soil suitability for Switchgrass in Mississippi. A Geodatabase associated with soil parameters was built and is available for future Geographic Information System use.

Keywords: Aptness, GIS, sensitivity analysis, switchgrass, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
8280 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507
8279 A Fuzzy Approach for Delay Proportion Differentiated Service

Authors: Mehran Garmehi, Yasser Mansouri

Abstract:

There are two paradigms proposed to provide QoS for Internet applications: Integrated service (IntServ) and Differentiated service (DiffServ).Intserv is not appropriate for large network like Internet. Because is very complex. Therefore, to reduce the complexity of QoS management, DiffServ was introduced to provide QoS within a domain using aggregation of flow and per- class service. In theses networks QoS between classes is constant and it allows low priority traffic to be effected from high priority traffic, which is not suitable. In this paper, we proposed a fuzzy controller, which reduced the effect of low priority class on higher priority ones. Our simulations shows that, our approach reduces the latency dependency of low priority class on higher priority ones, in an effective manner.

Keywords: QoS, Differentiated Service (DiffServ), FuzzyController, Delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
8278 Power System Security Constrained Economic Dispatch Using Real Coded Quantum Inspired Evolution Algorithm

Authors: A. K. Al-Othman, F. S. Al-Fares, K. M. EL-Nagger

Abstract:

This paper presents a new optimization technique based on quantum computing principles to solve a security constrained power system economic dispatch problem (SCED). The proposed technique is a population-based algorithm, which uses some quantum computing elements in coding and evolving groups of potential solutions to reach the optimum following a partially directed random approach. The SCED problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Real Coded Quantum-Inspired Evolution Algorithm (RQIEA) is then applied to solve the constrained optimization formulation. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that RQIEA is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: State Estimation, Fuzzy Linear Regression, FuzzyLinear State Estimator (FLSE) and Measurements Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
8277 Intelligent Vision System for Human-Robot Interface

Authors: Al-Amin Bhuiyan, Chang Hong Liu

Abstract:

This paper addresses the development of an intelligent vision system for human-robot interaction. The two novel contributions of this paper are 1) Detection of human faces and 2) Localizing the eye. The method is based on visual attributes of human skin colors and geometrical analysis of face skeleton. This paper introduces a spatial domain filtering method named ?Fuzzily skewed filter' which incorporates Fuzzy rules for deciding the gray level of pixels in the image in their neighborhoods and takes advantages of both the median and averaging filters. The effectiveness of the method has been justified over implementing the eye tracking commands to an entertainment robot, named ''AIBO''.

Keywords: Fuzzily skewed filter, human-robot interface, rmscontrast, skin color segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
8276 The Estimation of Semi Elliptical Surface Cracks Advancement via Fuzzy Logic

Authors: Gürol Önal, Ahmet Avcı

Abstract:

This paper presented the results of an experimental investigation into the axial fatigue behavior of a 5086 aluminum alloy which have several notch-aspect ratios a0/c0 and notch thickness ratio a/t with semi-elliptical surface cracks. Tests were conducted in la b air for stress levels of 50 % of their yield strength. Experiments were carried out for various notch to thickness ratios. Crack growth rates of test specimens both in surface and depth directions were determined by using die penetration method. Fuzzy Logic method was used to predict the deep direction crack growth because the dept of the crack is considerably difficult to measure.

Keywords: Axial fatigue, Crack growth rate, surface crack, Al-Mg alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
8275 Estimation of Real Power Transfer Allocation Using Intelligent Systems

Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis

Abstract:

This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation. 

Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
8274 Active Segment Selection Method in EEG Classification Using Fractal Features

Authors: Samira Vafaye Eslahi

Abstract:

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
8273 A Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions

Authors: Leehter Yao, Kuei-Song Weng, Cherng-Dir Huang

Abstract:

A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able toadapt the distance norm to the underlying distribution of the prototypedata points except that the sizes of ellipsoids need to be determined a priori. To overcome GKA's inability to determine appropriate size ofellipsoid, the genetic algorithm (GA) is applied to learn the size ofellipsoid. With GA combined with GKA, it will be shown in this paper that the proposed method outperforms the benchmark algorithms as well as algorithms in the field.

Keywords: Ellipsoids, genetic algorithm, classification, fuzzyc-means (FCM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
8272 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid

Authors: Hassan Hajabdollahi

Abstract:

Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.

Keywords: Shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
8271 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: Additive Manufacturing, Internal topologies, Porosity, Rapid Prototyping, Selective Laser Melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
8270 An Additive Watermarking Technique in Gray Scale Images Using Discrete Wavelet Transformation and Its Analysis on Watermark Strength

Authors: Kamaldeep Joshi, Rajkumar Yadav, Ashok Kumar Yadav

Abstract:

Digital Watermarking is a procedure to prevent the unauthorized access and modification of personal data. It assures that the communication between two parties remains secure and their communication should be undetected. This paper investigates the consequence of the watermark strength of the grayscale image using a Discrete Wavelet Transformation (DWT) additive technique. In this method, the gray scale host image is divided into four sub bands: LL (Low-Low), HL (High-Low), LH (Low-High), HH (High-High) and the watermark is inserted in an LL sub band using DWT technique. As the image is divided into four sub bands, a watermark of equal size of the LL sub band has been inserted and the results are discussed. LL represents the average component of the host image which contains the maximum information of the image. Two kinds of experiments are performed. In the first, the same watermark is embedded in different images and in the later on the strength of the watermark varies by a factor of s i.e. (s=10, 20, 30, 40, 50) and it is inserted in the same image.

Keywords: Watermarking, discrete wavelet transform, scaling factor, steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449