Search results for: Occupational Training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1037

Search results for: Occupational Training

257 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition

Authors: Fawaz S. Al-Anzi, Dia AbuZeina

Abstract:

Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.

Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
256 Extraction of Symbolic Rules from Artificial Neural Networks

Authors: S. M. Kamruzzaman, Md. Monirul Islam

Abstract:

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
255 Learning through Shared Procedures -A Case of Using Technology to Bridge the Gap between Theory and Practice in Officer Education

Authors: O. Boe, S-T. Kristiansen, R. Wold

Abstract:

In this article we explore how computer assisted exercises may allow for bridging the traditional gap between theory and practice in professional education. To educate officers able to master the complexity of the battlefield the Norwegian Military Academy needs to develop a learning environment that allows for creating viable connections between the educational environment and the field of practice. In response to this challenge we explore the conditions necessary to make computer assisted training systems (CATS) a useful tool to create structural similarities between an educational context and the field of military practice. Although, CATS may facilitate work procedures close to real life situations, this case do demonstrate how professional competence also must build on viable learning theories and environments. This paper explores the conditions that allow for using simulators to facilitate professional competence from within an educational setting. We develop a generic didactic model that ascribes learning to participation in iterative cycles of action and reflection. The development of this model is motivated by the need to develop an interdisciplinary professional education rooted in the pattern of military practice.

Keywords: Development in higher education, experiential learning, professional education, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1188
254 Thai Perception on Bitcoin Value

Authors: Toby Gibbs, Suwaree Yordchim

Abstract:

This research analyzes factors affecting the success of Bitcoin Value within Thailand and develops a guideline for self-reliance for effective business implementation. Samples in this study included 121 people through surveys. The results revealed four main factors affecting the success as follows: 1) A great majority didn't know what Bitcoin was. 2) Didn't grasp the concept of a digital currency or see the benefit of a digital currency. 3) There is a great need to educate the next generation of learners on the benefits of Bitcoin within the community. 4) Future Career training should be pursued in applied Bitcoin development.

The guideline for self-reliance planning consisted of 4 aspects: 1) Local communities need to develop awareness of the usefulness of Bitcoin and share the value of Bitcoin among friends and family. 2) Computer Science and Business Management staff should develop skills to expand on the benefits of Bitcoin within their departments. 3) Further research should be pursued on how Bitcoin Value can improve business and tourism within Thailand. Local communities should focus on developing Bitcoin awareness by encouraging street vendors to accept Bitcoin as another form of payment for services rendered. 4) Development planning: by arranging meet up groups to conduct further education on Bitcoin and share solutions on adoption into every day usage.

Keywords: Bitcoin, Cryptocurrency, Decentralized.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
253 An Agri-food Supply Chain Model for Cultivating the Capabilities of Farmers Accessing Market Using Corporate Social Responsibility Program

Authors: W. Sutopo, M. Hisjam, Yuniaristanto

Abstract:

In general, small-scale vegetables farmers experience problems in improving the safety and quality of vegetables supplied to high-class consumers in modern retailers. They also lack of information to access market. The farmers group and/or cooperative (FGC) should be able to assist its members by providing training in handling and packing vegetables and enhancing marketing capabilities to sell commodities to the modern retailers. This study proposes an agri-food supply chain (ASC) model that involves the corporate social responsibility (CSR) activities to cultivate the capabilities of farmers to access market. Multi period ASC model is formulated as Weighted Goal Programming (WGP) to analyze the impacts of CSR programs to empower the FGCs in managing the small-scale vegetables farmers. The results show that the proposed model can be used to determine the priority of programs in order to maximize the four goals to be achieved in the CSR programs.

Keywords: agri-food supply chain, corporate social responsibility, small-scale vegetables farmers, weighted goal programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
252 Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control

Authors: B. Dora Arul Selvi, .N. Kamaraj

Abstract:

Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.

Keywords: Fuzzy Support Vector Machine (FSVM), Incremental Cost, Preventive Control, Transient stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
251 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies

Abstract:

Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Keywords: Neural Networks, Radial Basis Functions, Metamodelling, Python machine learning libraries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
250 Development and Usability Assessment of a Connected Resistance Exercise Band Application for Strength-Monitoring

Authors: J. A. Batsis, G. G. Boateng, L. M. Seo, C. L. Petersen, K. L. Fortuna, E. V. Wechsler, R. J. Peterson, S. B. Cook, D. Pidgeon, R. S. Dokko, R. J. Halter, D. F. Kotz

Abstract:

Resistance exercise bands are a core component of any physical activity strengthening program. Strength training can mitigate the development of sarcopenia, the loss of muscle mass or strength and function with aging. Yet, the adherence of such behavioral exercise strategies in a home-based setting are fraught with issues of monitoring and compliance. Our group developed a Bluetooth-enabled resistance exercise band capable of transmitting data to an open-source platform. In this work, we developed an application to capture this information in real-time, and conducted three usability studies in two mixed-aged groups of participants (n=6 each) and a group of older adults with obesity participating in a weight-loss intervention (n=20). The system was favorable, acceptable and provided iterative information that could assist in future deployment on ubiquitous platforms. Our formative work provides the foundation to deliver home-based monitoring interventions in a high-risk, older adult population.

Keywords: Application, mHealth, older adult, resistance exercise band, sarcopenia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
249 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach

Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov

Abstract:

There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.

Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
248 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018

Authors: M. Sitoe, O. Zacarias

Abstract:

University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.

Keywords: Evasion and retention, cross validation, bagging, stacking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118
247 A Study on the Leadership Behavior, Safety Culture, and Safety Performance of the Healthcare Industry

Authors: Cheng-Chia Yang , Yi-Shun Wang , Sue-Ting Chang, Suh-Er Guo, Mei-Fen Huang

Abstract:

Object: Review recent publications of patient safety culture to investigate the relationship between leadership behavior, safety culture, and safety performance in the healthcare industry. Method: This study is a cross-sectional study, 350 questionnaires were mailed to hospital workers with 195 valid responses obtained, and a 55.7% valid response rate. Confirmatory factor analysis (CFA) was carried out to test the factor structure and determine if the composite reliability was significant with a factor loading of >0.5, resulting in an acceptable model fit. Results: Through the analysis of One-way ANOVA, the results showed that physicians significantly have more negative patient safety culture perceptions and safety performance perceptions than non- physicians. Conclusions: The path analysis results show that leadership behavior affects safety culture and safety performance in the health care industry. Safety performance was affected and improved with contingency leadership and a positive patient safety organization culture. The study suggests improving safety performance by providing a well-managed system that includes: consideration of leadership, hospital worker training courses, and a solid safety reporting system.

Keywords: Leadership Behavior, Patient Safety, Safety Culture, Safety Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3994
246 Repair and Maintenance Capability and Facilities Availability for MF 285 Tractor Operators in North of Khouzestan Province

Authors: Fatemeh Afsharnia, Mohammad Amin Asoodar, Abbas Abdeshahi, Afshin Marzban

Abstract:

A repairable mechanical system (as agricultural tractor) is subject to deterioration or repeated failure and needs a repair shops and also operator’s capability for the repair and maintenance operations. Data are based on field visits and interviews with 48MF 285 tractor operators from 14 villages collected in north of Khouzestan province. The results showed that most operators were lack the technical skill to service and repair tractors due to insufficient training, specific education and work experience. Inadequate repair and maintenance facilities, such as workshops, mechanics and spare parts depots cause delays in repair work in the survey areas. Farmers do not keep accurate service records and most of them disregard proper maintenance and service of their tractors, such as changing engine oil without following the manufacturer’s recommendations. Since, Repair and maintenance facilities should be established in village areas to guarantee timely repair in case of breakdowns and to make spare parts available at low price. The operators should keep service records accurately and adhere to maintenance and service schedules according to the manufacturer’s instructions. They should also be encouraged to do the service and maintain their tractors properly.

Keywords: Operators’ capability, Facilities availability, Repair and maintenance, MF 285 tractors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
245 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3394
244 Role of Technological Innovation in Improving Manufacturing Performance: A Review

Authors: Davinder Singh, Jaimal Singh Khamba, Tarun Nanda

Abstract:

MSMEs are regarded as the sunrise sector of the Indian economy in view of its large potential for growth and likely socio economic impact specifically on employment and income generation. In today’s competitive business environment, global competition forces companies to continuously seek ways of improving their products and services. The pressure on organizations to adapt to new technologies and external threats requires resourcefulness, creativity and innovation. Market has become more open, competitive and customers more demanding. Without continuous technology innovation, no organization can ever remain competitive. Innovations reflect a critical way in which organizations respond to either technological or market challenges. The need of the market is to deliver high quality products through continuous changing in features in product, improve existing products, reduce their cost, and improve employee skills, training, technology infrastructure and financial policies. Therefore, the key factor of organization’s ability to change is innovation. The study presents a detailed review of literature on the role of technology innovation in improving manufacturing performance of industries.

Keywords: Competitive, Manufacturing performance, MSMEs, Technological Innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
243 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
242 Knowledge Transfer in Industrial Clusters

Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha

Abstract:

This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.

Keywords: Industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
241 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3777
240 A Complexity-Based Approach in Image Compression using Neural Networks

Authors: Hadi Veisi, Mansour Jamzad

Abstract:

In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.

Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
239 Investigation of Various Physical and Physiological Properties of Elite Male Ethiopian Distance Runners

Authors: Getaye F. Gelaw

Abstract:

The purpose of this study was to investigate the key physical and physiological characteristics of 16 elite male Ethiopian national team distance runners, who have an average age of 28.1 ± 4.3 years, a height of 175.0 ± 5.6 cm, a weight of 59.1 ± 3.9 kg, a BMI of 19.6 ± 1.5, and training age of 10.1 ± 5.1 yrs. The average weekly distance is 196.3 ± 13.8 km, the average 10,000 m time is 27:14 ± 0.5 min sec, the average half marathon time is 59:30 ± 0.6 min sec, the average marathon time is 2:04:20 ± 2.7 hr min ss. In addition, the average Cooper test (12-minute run test) is 4525.4 ± 139.7 meters, and the average VO2 max is 90.8 ± 3.1 ml/kg/m. All athletes have a high profile and compete on the international label, and according to the World Athletics athletes' ranking system in 2021, 56.3% of the 16 participants were platinum label status, while the remaining 43.7% were gold label status-completed an incremental treadmill test for the assessment of VO2peak, submaximal running, lactate threshold and test during which they ran continuously at 21 km/h. The laboratory determined VO2peak was 91.4 ± 1.7 mL/kg/min with anaerobic threshold of 74.2 ± 1.6 mL/min/kg and VO2 max 81%. The speed at the Anaerobic Threshold (AT) is 15.9 ± 0.6 kmh and the altitude is 4.0%. The Respiratory Compensation Point (RCP) was reached at 88.7 ± 1.1 mL/min/kg and 97% of VO2 max. On RCP, the speed is 17.6 ± 0.4 km/h and the altitude/slope are 5.5%, and the speed at Maximum effort is 19.5 ± 1.5 and the elevation is 6.0%. The data also suggest that Ethiopian distance top athletes have considerably higher VO2 max values than those found in earlier research.

Keywords: Long-distance running, Ethiopians, VO2 max, World Athletics, Anthropometric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272
238 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms

Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma

Abstract:

In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.

Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
237 Family-size Biogas Plant Using Manure and Urine Mixture at Ambient Temperature in Semi-arid Regions of Northwestern China

Authors: Wenguang Ding, Yang Wu, Xia Wang, Yayu Gao

Abstract:

Biogas, a clean renewable energy, is attracting a growing concern of researchers and professionals in many fields. Based on the natural and climatic conditions in semi-arid regions of northwestern China, the present study introduces a specifically-designed family-size biogas plant (with a digester of 10m3) with manure and urine of animals and humanity as raw materials. The biogas plant is applicable to areas with altitudes of more than 2000 meters in northwestern China. In addition to the installation cost, a little operational expenditure, structure, characteristics, benefits of this small-scale biogas plant, this article introduces a wide range of specific popularization methods such as training, financial support, guided tour to the biogas plant, community-based group study and delivery of operational manuals. The feasibility of the biogas plant is explored on the basis of the availability of the raw materials. Simple operations contained in the current work increase the possibility of the wide use of this small-scale biogas plant in similar regions of the world.

Keywords: biogas, family-size biogas plant, northwestern China, popularization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
236 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
235 Information Construction of Higher Education in Teaching Practice

Authors: Yang Meng, James L. Patnao

Abstract:

With the rapid development of information technology and the impact of the epidemic environment, the traditional teaching model can no longer meet the requirements of the development of the times. The development of teaching mechanisms is the inevitable trend of the future development of higher education. We must further promote the informatization of higher education in teaching practice, let modern information technology penetrate and practice in classroom teaching, and provide promising opportunities for the high-quality development of higher education. This article, mainly through the distribution of questionnaires to teachers of colleges and universities, aims to understand the degree of informatization in the teaching of colleges and universities. And on the basis of domestic and foreign scholars' research on higher education informatization, it analyzes the existing problems, and finds the optimal solution based on the needs of education and teaching development. According to the survey results, most college teachers will use information technology in teaching practice, but the information technology teaching tools used by teachers are relatively simple, and most of them use only slides. In addition, backward informatization infrastructure and less informatization training are the main challenges facing the current teaching informatization construction. If colleges and universities can make good use of information technology and multimedia technology and combine it with traditional teaching, it will definitely promote the development of college education and further promote the modernization and informatization of higher education.

Keywords: Higher education, teaching practice, informatization construction, e-education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230
234 Mapping Paddy Rice Agriculture using Multi-temporal FORMOSAT-2 Images

Authors: Yi-Shiang Shiu, Meng-Lung Lin, Kang-Tsung Chang, Tzu-How Chu

Abstract:

Most paddy rice fields in East Asia are small parcels, and the weather conditions during the growing season are usually cloudy. FORMOSAT-2 multi-spectral images have an 8-meter resolution and one-day recurrence, ideal for mapping paddy rice fields in East Asia. To map rice fields, this study first determined the transplanting and the most active tillering stages of paddy rice and then used multi-temporal images to distinguish different growing characteristics between paddy rice and other ground covers. The unsupervised ISODATA (iterative self-organizing data analysis techniques) and supervised maximum likelihood were both used to discriminate paddy rice fields, with training areas automatically derived from ten-year cultivation parcels in Taiwan. Besides original bands in multi-spectral images, we also generated normalized difference vegetation index and experimented with object-based pre-classification and post-classification. This paper discusses results of different image classification methods in an attempt to find a precise and automatic solution to mapping paddy rice in Taiwan.

Keywords: paddy rice fields; multi-temporal; FORMOSAT-2images, normalized difference vegetation index, object-basedclassification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
233 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation

Authors: Lo Kar Yin, Law Ka Mei

Abstract:

Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its disciplines. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off (QTO) and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC4 Engineering and Construction Contract (ECC) Options A and C.

Keywords: Building Information Modeling, cost estimation, quantity take-off, modeling techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
232 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: Metaphor detection, deep learning, representation learning, embeddings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
231 Design Guidelines for an Enhanced Interaction Experience in the Domain of Smartphone-Based Applications for Sport and Fitness

Authors: Paolo Pilloni, Fabrizio Mulas, Salvatore Carta

Abstract:

Nowadays, several research studies point up that an active lifestyle is essential for physical and mental health benefits. Mobile phones have greatly influenced people’s habits and attitudes also in the way they exercise. Our research work is mainly focused on investigating how to exploit mobile technologies to favour people’s exertion experience. To this end, we developed an exertion framework users can exploit through a real world mobile application, called EverywhereSport Run (EWRun), designed to act as a virtual personal trainer to support runners during their trainings. In this work, inspired by both previous findings in the field of interaction design for people with visual impairments, feedback gathered from real users of our framework, and positive results obtained from two experimentations, we present some new interaction facilities we designed to enhance the interaction experience during a training. The positive obtained results helped us to derive some interaction design recommendations we believe will be a valid support for designers of future mobile systems conceived to be used in circumstances where there are limited possibilities of interaction.

Keywords: Human Computer Interaction, Interaction Design Guidelines, Persuasive Mobile Technologies for Sport and Health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
230 An Analysis of Digital Forensic Laboratory Development among Malaysia’s Law Enforcement Agencies

Authors: Sarah K. Taylor, Miratun M. Saharuddin, Zabri A. Talib

Abstract:

Cybercrime is on the rise, and yet many Law Enforcement Agencies (LEAs) in Malaysia have no Digital Forensics Laboratory (DFL) to assist them in the attrition and analysis of digital evidence. From the estimated number of 30 LEAs in Malaysia, sadly, only eight of them owned a DFL. All of the DFLs are concentrated in the capital of Malaysia and none at the state level. LEAs are still depending on the national DFL (CyberSecurity Malaysia) even for simple and straightforward cases. A survey was conducted among LEAs in Malaysia owning a DFL to understand their history of establishing the DFL, the challenges that they faced and the significance of the DFL to their case investigation. The results showed that the while some LEAs faced no challenge in establishing a DFL, some of them took seven to 10 years to do so. The reason was due to the difficulty in convincing their management because of the high costs involved. The results also revealed that with the establishment of a DFL, LEAs were better able to get faster forensic result and to meet agency’s timeline expectation. It is also found that LEAs were also able to get more meaningful forensic results on cases that require niche expertise, compared to sending off cases to the national DFL. Other than that, cases are getting more complex, and hence, a continuous stream of budget for equipment and training is inevitable. The result derived from the study is hoped to be used by other LEAs in justifying to their management the benefits of establishing an in-house DFL.

Keywords: Digital forensics, digital forensics laboratory, digital evidence, law enforcement agency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
229 Comparison of Machine Learning Techniques for Single Imputation on Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.

Keywords: Machine Learning, audiograms, data imputations, single imputations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155
228 Integrating Competences into Work Planning – The Influence of Competence-Based Parameters on Strategic Business Objectives

Authors: G. Meyer, M. Klewer, P. Nyhuis

Abstract:

Constantly changing economic conditions require companies to design their production to be more economical, innovative, and flexible. Since workers have a decisive influence on cost, time, and quality, e.g. by monitoring indicators that determine quality, by developing processes more resistant to disturbances, or by monitoring environmental standards, a focus on personnel as a production factor is needed. This presupposes the efficient use and systematic enhancement of employees’ existing competences since greater consideration of these aspects in work planning will help to enhance competitiveness. The aim of the research project ‘Integrated Technology- and Competence-based Work Planning in Socio-Technical Systems’ is to develop a new work planning method that combines technology with work science by incorporating employees’ skills as a quality indicator. For employee competences to increase competitiveness, it is first of all necessary to assess how competences affect cost, time, and quality. A model for deriving predictions about the effects of competence-based parameters on these strategic business objectives is developed in this paper.

Keywords: Competence management, education and training, employee competences, one-factor-at-a-time method, work planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541