Search results for: aqueous extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 868

Search results for: aqueous extract

118 Active and Reactive Power Control of a DFIG with MPPT for Variable Speed Wind Energy Conversion using Sliding Mode Control

Authors: Youcef Bekakra, Djilani Ben attous

Abstract:

This paper presents the study of a variable speed wind energy conversion system based on a Doubly Fed Induction Generator (DFIG) based on a sliding mode control applied to achieve control of active and reactive powers exchanged between the stator of the DFIG and the grid to ensure a Maximum Power Point Tracking (MPPT) of a wind energy conversion system. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the PWM converter. To extract a maximum of power, the rotor side converter is controlled by using a stator flux-oriented strategy. The created decoupling control between active and reactive stator power allows keeping the power factor close to unity. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed.

Keywords: Doubly fed induction generator, wind energy, wind turbine, sliding mode control, maximum power point tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4107
117 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
116 Novel Dual Stage Membrane Bioreactor for the Continuous Remediation of Electroplating Wastewater

Authors: B. A. Q. Santos, S. K. O. Ntwampe, G. Muchatibaya

Abstract:

In this study, the designed dual stage membrane bioreactor (MBR) system was conceptualized for the treatment of cyanide and heavy metals in electroplating wastewater. The design consisted of a primary treatment stage to reduce the impact of fluctuations and the secondary treatment stage to remove the residual cyanide and heavy metal contaminants in the wastewater under alkaline pH conditions. The primary treatment stage contained hydrolyzed Citrus sinensis (C. sinensis) pomace and the secondary treatment stage contained active Aspergillus awamori (A. awamori) biomass, supplemented solely with C. sinensis pomace extract from the hydrolysis process. An average of 76.37%, 95.37%, 93.26 and 94.76% and 99.55%, 99.91%, 99.92% and 99.92% degradation efficiency for total cyanide (T-CN), including the sorption of nickel (Ni), zinc (Zn) and copper (Cu) were observed after the first and second treatment stages, respectively. Furthermore, cyanide conversion by-products degradation was 99.81% and 99.75 for both formate (CHOO-) and ammonium (NH4 +) after the second treatment stage. After the first, second and third regeneration cycles of the C. sinensis pomace in the first treatment stage, Ni, Zn and Cu removal achieved was 99.13%, 99.12% and 99.04% (first regeneration cycle), 98.94%, 98.92% and 98.41% (second regeneration cycle) and 98.46 %, 98.44% and 97.91% (third regeneration cycle), respectively. There was relatively insignificant standard deviation detected in all the measured parameters in the system which indicated reproducibility of the remediation efficiency in this continuous system.

Keywords: Aspergillus awamori, Citrus sinensis pomace, electroplating wastewater remediation, membrane bioreactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
115 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping

Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu

Abstract:

This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.

Keywords: Microwave filter, scattering parameter (s-parameter), coupling matrix, intelligent tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
114 Development of a Technology Assessment Model by Patents and Customers' Review Data

Authors: Kisik Song, Sungjoo Lee

Abstract:

Recent years have seen an increasing number of patent disputes due to excessive competition in the global market and a reduced technology life-cycle; this has increased the risk of investment in technology development. While many global companies have started developing a methodology to identify promising technologies and assess for decisions, the existing methodology still has some limitations. Post hoc assessments of the new technology are not being performed, especially to determine whether the suggested technologies turned out to be promising. For example, in existing quantitative patent analysis, a patent’s citation information has served as an important metric for quality assessment, but this analysis cannot be applied to recently registered patents because such information accumulates over time. Therefore, we propose a new technology assessment model that can replace citation information and positively affect technological development based on post hoc analysis of the patents for promising technologies. Additionally, we collect customer reviews on a target technology to extract keywords that show the customers’ needs, and we determine how many keywords are covered in the new technology. Finally, we construct a portfolio (based on a technology assessment from patent information) and a customer-based marketability assessment (based on review data), and we use them to visualize the characteristics of the new technologies.

Keywords: Technology assessment, patents, citation information, opinion mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
113 Understanding the Experience of the Visually Impaired towards a Multi-Sensorial Architectural Design

Authors: Sarah M. Oteifa, Lobna A. Sherif, Yasser M. Mostafa

Abstract:

Visually impaired people, in their daily lives, face struggles and spatial barriers because the built environment is often designed with an extreme focus on the visual element, causing what is called architectural visual bias or ocularcentrism. The aim of the study is to holistically understand the world of the visually impaired as an attempt to extract the qualities of space that accommodate their needs, and to show the importance of multi-sensory, holistic designs for the blind. Within the framework of existential phenomenology, common themes are reached through "intersubjectivity": experience descriptions by blind people and blind architects, observation of how blind children learn to perceive their surrounding environment, and a personal lived blind-folded experience are analyzed. The extracted themes show how visually impaired people filter out and prioritize tactile (active, passive and dynamic touch), acoustic and olfactory spatial qualities respectively, and how this happened during the personal lived blind folded experience. The themes clarify that haptic and aural inclusive designs are essential to create environments suitable for the visually impaired to empower them towards an independent, safe and efficient life.

Keywords: Visually impaired, architecture, multi-sensory design, architectural ocularcentrism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
112 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed

Abstract:

High Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20- 60 and 6-18 μg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 μg/ml and for 6S were 0.3672 and 1.2238 μg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: Ginger, 6-gingerol, HPLC, 6-shogaol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
111 Analysis of Precipitation Time Series of Urban Centers of Northeastern Brazil using Wavelet Transform

Authors: Celso A. G. Santos, Paula K. M. M. Freire

Abstract:

The urban centers within northeastern Brazil are mainly influenced by the intense rainfalls, which can occur after long periods of drought, when flood events can be observed during such events. Thus, this paper aims to study the rainfall frequencies in such region through the wavelet transform. An application of wavelet analysis is done with long time series of the total monthly rainfall amount at the capital cities of northeastern Brazil. The main frequency components in the time series are studied by the global wavelet spectrum and the modulation in separated periodicity bands were done in order to extract additional information, e.g., the 8 and 16 months band was examined by an average of all scales, giving a measure of the average annual variance versus time, where the periods with low or high variance could be identified. The important increases were identified in the average variance for some periods, e.g. 1947 to 1952 at Teresina city, which can be considered as high wet periods. Although, the precipitation in those sites showed similar global wavelet spectra, the wavelet spectra revealed particular features. This study can be considered an important tool for time series analysis, which can help the studies concerning flood control, mainly when they are applied together with rainfall-runoff simulations.

Keywords: rainfall data, urban center, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
110 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network

Authors: Sanae Attioui, Said Najah

Abstract:

The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.

Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498
109 Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification

Authors: Zaouche Mohamed, Amini Mohamed, Foughali Khaled, Aitkaid Souhila, Bouchiha Nihad Sarah

Abstract:

The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control.

Keywords: Aircraft aerodynamic model, Microsoft flight simulator, MQ-1 Predator, total least squares estimation, piloting the aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
108 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions, which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.

Keywords: Open channel flow, smooth bed, rough bed, Reynolds number, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
107 Chemical and Sensory Properties of Chardonnay Wines Produced in Different Oak Barrels

Authors: Valentina Obradović, Josip Mesić, Maja Ergović Ravančić, Kamila Mijowska, Brankica Svitlica

Abstract:

French oak and American oak barrels are most famous all over the world, but barrels of different origin can also be used for obtaining high quality wines. The aim of this research was to compare the influence of different Slovenian (Croatian) and French oak barrels on the quality of Chardonnay wine. Grapes were grown in the Croatian wine growing region of Kutjevo in 2015. Chardonnay wines were tested for basic oenological parameters (alcohol, extract, reducing sugar, SO2, acidity), total polyphenols content (Folin-Ciocalteu method), antioxidant activity (ABTS and DPPH method) and colour density. Sensory evaluation was performed by students of viticulture/oenology. Samples produced by classical fermentation and ageing in French oak barrels had better results for polyphenols and sensory evaluation (especially low toasting level) than samples in Slovenian barrels. All tested samples were scored as a “quality” or “premium quality” wines. Sur lie method of fermentation and ageing in Slovenian oak barrel had very good extraction of polyphenols and high antioxidant activity with the usage of authentic yeasts, while commercial yeast strain resulted in worse chemical and sensory parameters.

Keywords: Chardonnay, French oak, Slovenian oak, sur lie.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
106 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta

Abstract:

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
105 Formulation and Technology of the Composition of Essential Oils as a Feed Additive in Poultry with Antibacterial Action

Authors: S. Barbaqadze, M. Goderdzishvili, E. Mosidze, L. Lomtadze, V. Mshvildadze, L. Bakuridze, D. Berashvili, A. Bakuridze

Abstract:

This paper focuses on the formulation of phytobiotic designated for further implantation in poultry farming. Composition was meant to be water-soluble powder containing antibacterial essential oils. The development process involved Thyme, Monarda and Clary sage essential oils. The antimicrobial activity of essential oils composite was meant to be tested against gram-negative and gram-positive bacterial strains. The results are processed using the statistical program Sigma STAT. To make essential oils composition water soluble surfactants were added to them. At the first stage of the study, nine options for the optimal composition of essential oils and surfactants were developed. The effect of the amount of surfactants on the essential oils composition solubility in water has been investigated. On the basis of biopharmaceutical studies, the formulation of phytobiotic has been determined: Thyme, monarda and clary sage essential oils 2:1:1 - 100 parts; Licorice extract 5.25 parts and inhalation lactose 300 parts. A technology for the preparation of phytobiotic has been developed and a technological scheme for the preparation of phytobiotic has been made up. The research was performed within the framework of the grant project CARYS-19-363 funded be the Shota Rustaveli National Science Foundation of Georgia.

Keywords: Clary, essential oils, monarda, phytobiotics, poultry, thyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498
104 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4222
103 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
102 Practical Method for Digital Music Matching Robust to Various Sound Qualities

Authors: Bokyung Sung, Jungsoo Kim, Jinman Kwun, Junhyung Park, Jihye Ryeo, Ilju Ko

Abstract:

In this paper, we propose a practical digital music matching system that is robust to variation in sound qualities. The proposed system is subdivided into two parts: client and server. The client part consists of the input, preprocessing and feature extraction modules. The preprocessing module, including the music onset module, revises the value gap occurring on the time axis between identical songs of different formats. The proposed method uses delta-grouped Mel frequency cepstral coefficients (MFCCs) to extract music features that are robust to changes in sound quality. According to the number of sound quality formats (SQFs) used, a music server is constructed with a feature database (FD) that contains different sub feature databases (SFDs). When the proposed system receives a music file, the selection module selects an appropriate SFD from a feature database; the selected SFD is subsequently used by the matching module. In this study, we used 3,000 queries for matching experiments in three cases with different FDs. In each case, we used 1,000 queries constructed by mixing 8 SQFs and 125 songs. The success rate of music matching improved from 88.6% when using single a single SFD to 93.2% when using quadruple SFDs. By this experiment, we proved that the proposed method is robust to various sound qualities.

Keywords: Digital Music, Music Matching, Variation in Sound Qualities, Robust Matching method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
101 Quantitative Determination of Free Radical Scavenging Activity and Anti-tumor Activity of Some Myanmar Herbal Plants

Authors: M. M. Mon, S. S. Maw, Z. K. Oo

Abstract:

Antioxidant activities of ethanolic extracts of Ardisia japonica Blume., Ageartum conyzoides Linn., and Cocculus hirsutus Linn Diels. leaves was determined qualitatively and quantitatively in this research. 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical solution was used to investigate free radical scavenging activity of these leaves extracts. Ascorbic acid (Vitamin C) was used as the standard. In the present investigation, it is found that all of these extracts have remarkable antioxidant activities. The EC50 values of these ethanolic extracts were 12.72 μg/ml for A. japonica, 15.19 μg/ml for A. conyzoides, 10.68 μg/ml for C. hirsutus respectively. Among these Myanmar medicinal plants, C. hirsutus showed higher antioxidant activities as well as free radical scavenging activity than black tea (Camellia sinensis), the famous antioxidant, and A. japonica and A. conyzoides showed a rather lower antioxidant activity than tea extracts. According to results from bioassay with carrot discs infected with Agrobacterium tumefaciens, all extracts showed anti-tumor activity after 3 weeks of incubation. No gall was detected in carrot disks treated with C. hirsutus and A. japonica extracts in the dose of 100ppm and in carrot discs treated with A. conyzoides extract in the dose of 1000 ppm. Therefore, the research clearly indicates that these weedy plants of dry farm land are exceptionally advantageous for human health.

Keywords: Antioxidant, Anti-tumor activity, Carrot-discbioassay, DPPH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
100 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
99 The Household-Based Socio-Economic Index for Every District in Peninsular Malaysia

Authors: Nuzlinda Abdul Rahman, Syerrina Zakaria

Abstract:

Deprivation indices are widely used in public health study. These indices are also referred as the index of inequalities or disadvantage. Even though, there are many indices that have been built before, it is believed to be less appropriate to use the existing indices to be applied in other countries or areas which had different socio-economic conditions and different geographical characteristics. The objective of this study is to construct the index based on the geographical and socio-economic factors in Peninsular Malaysia which is defined as the weighted household-based deprivation index. This study has employed the variables based on household items, household facilities, school attendance and education level obtained from Malaysia 2000 census report. The factor analysis is used to extract the latent variables from indicators, or reducing the observable variable into smaller amount of components or factor. Based on the factor analysis, two extracted factors were selected, known as Basic Household Amenities and Middle-Class Household Item factor. It is observed that the district with a lower index values are located in the less developed states like Kelantan, Terengganu and Kedah. Meanwhile, the areas with high index values are located in developed states such as Pulau Pinang, W.P. Kuala Lumpur and Selangor.

Keywords: Factor Analysis, Basic Household Amenities, Middle-Class Household Item, Socio-economic Index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
98 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).

Keywords: Feature extraction, heart rate variability, hypertension, residual networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195
97 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording

Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy

Abstract:

Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.

Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
96 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199
95 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture

Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro

Abstract:

One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.

Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
94 The Phenolic Substances and Antioxidant Activity of White Saffron (Curcuma mangga Val.) as Affected by Blanching Methods

Authors: D. Pujimulyani, S. Raharjo, Y. Marsono, U. Santoso

Abstract:

Background and objectives: Most of the agricultural products are processed by blanching. Blanching can increase antioxidant activity in white saffron products. The objective of this research were to determine antioxidant activity, to identify, and to measure changes in phenolic substances of fresh and blanched white saffron rhizomes (Curcuma mangga Val.). Methods: White saffron rhizomes were peeled, washed and blanched in boiling water containing 0% or 0.05% citric acid solution for 5 and 10 minutes. Samples were extracted using methanol, rotaevaporated, and freezedried. Dried extract was determined antioxidant activity by DPPH method, identified and quantified for the phenolic substances by High Performance Liquid Chromatography (HPLC) equipped with coloumn C18 and Photodiode-array detector (PAD). Result: This research showed that the quantity of the 6 phenolic substances identified in blanched white saffron in citric acid solution increased significantly compared to that of the non-blanched. Blanching white saffron in 0.05% citric acid media for 5 minutes increased its antioxidant activity, and total phenolic content. Conclusions: The identified phenolic substances of white saffron were Gallic Acid (GA), Catechin (C), Epicatechin (EC), Epigallocatechin (EGC), Epigallocatechingallat (EGCG) and Gallocatechingallat (GCG). The blanched white saffron contained C and EGCG significantly higher than that of fresh rhizomes.

Keywords: White saffron, antioxidant activity, blanching, phenolic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3157
93 Application of Statistical Approach for Optimizing CMCase Production by Bacillus tequilensis S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source

Authors: A. Sharma, R. Tewari, S. K. Soni

Abstract:

Biofuels production has come forth as a future technology to combat the problem of depleting fossil fuels. Bio-based ethanol production from enzymatic lignocellulosic biomass degradation serves an efficient method and catching the eye of scientific community. High cost of the enzyme is the major obstacle in preventing the commercialization of this process. Thus main objective of the present study was to optimize composition of medium components for enhancing cellulase production by newly isolated strain of Bacillus tequilensis. Nineteen factors were taken into account using statistical Plackett-Burman Design. The significant variables influencing the cellulose production were further employed in statistical Response Surface Methodology using Central Composite Design for maximizing cellulase production. The optimum medium composition for cellulase production was: peptone (4.94 g/L), ammonium chloride (4.99 g/L), yeast extract (2.00 g/L), Tween-20 (0.53 g/L), calcium chloride (0.20 g/L) and cobalt chloride (0.60 g/L) with pH 7, agitation speed 150 rpm and 72 h incubation at 37oC. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.99. Maximum cellulase productivity of 11.5 IU/ml was observed against the model predicted value of 13 IU/ml. This was found to be optimally active at 60oC and pH 5.5.

Keywords: Bacillus tequilensis, CMCase, Submerged Fermentation, Optimization, Plackett-Burman Design, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
92 Extraction of Data from Web Pages: A Vision Based Approach

Authors: P. S. Hiremath, Siddu P. Algur

Abstract:

With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.

Keywords: Web data records, web data regions, web mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
91 Effect of Different Media and Mannitol Concentrations on Growth and Development of Vandopsis lissochiloides (Gaudich.) Pfitz. under Slow Growth Conditions

Authors: J. Linjikao, P. Inthima, A. Kongbangkerd

Abstract:

In vitro conservation of orchid germplasm provides an effective technique for ex situ conservation of orchid diversity. In this study, an efficient protocol for in vitro conservation of Vandopsis lissochiloides (Gaudich.) Pfitz. plantlet under slow growth conditions was investigated. Plantlets were cultured on different strength of Vacin and Went medium (½VW and ¼VW) supplemented with different concentrations of mannitol (0, 2, 4, 6 and 8%), sucrose (0 and 3%) and 50 g/L potato extract, 150 mL/L coconut water. The cultures were incubated at 25±2 °C and maintained under 20 µmol/m2s light intensity for 24 weeks without subculture. At the end of preservation period, the plantlets were subcultured to fresh medium for growth recovery. The results found that the highest leaf number per plantlet could be observed on ¼VW medium without adding sucrose and mannitol while the highest root number per plantlet was found on ½VW added with 3% sucrose without adding mannitol after 24 weeks of in vitro storage. The results showed that the maximum number of leaves (5.8 leaves) and roots (5.0 roots) of preserved plantlets were produced on ¼VW medium without adding sucrose and mannitol. Therefore, ¼VW medium without adding sucrose and mannitol was the best minimum growth conditions for medium-term storage of V. lissochiloides plantlets.

Keywords: Preservation, Vandopsis, germplasm, in vitro.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706
90 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
89 Preparation and Characterization of CuFe2O4/TiO2 Photocatalyst for the Conversion of CO2 into Methanol under Visible Light

Authors: Md. Maksudur Rahman Khan, M. Rahim Uddin, Hamidah Abdullah, Kaykobad Md. Rezaul Karim, Abu Yousuf, Chin Kui Cheng, Huei Ruey Ong

Abstract:

A systematic study was conducted to explore the photocatalytic reduction of carbon dioxide (CO2) into methanol on TiO2 loaded copper ferrite (CuFe2O4) photocatalyst under visible light irradiation. The phases and crystallite size of the photocatalysts were characterized by X-ray diffraction (XRD) and it indicates CuFe2O4 as tetragonal phase incorporation with anatase TiO2 in CuFe2O4/TiO2 hetero-structure. The XRD results confirmed the formation of spinel type tetragonal CuFe2O4 phases along with predominantly anatase phase of TiO2 in the CuFe2O4/TiO2 hetero-structure. UV-Vis absorption spectrum suggested the formation of the hetero-junction with relatively lower band gap than that of TiO2. Photoluminescence (PL) technique was used to study the electron–hole (e/h+) recombination process. PL spectra analysis confirmed the slow-down of the recombination of electron–hole (e/h+) pairs in the CuFe2O4/TiO2 hetero-structure. The photocatalytic performance of CuFe2O4/TiO2 was evaluated based on the methanol yield with varying amount of TiO2 over CuFe2O4 (0.5:1, 1:1, and 2:1) and changing light intensity. The mechanism of the photocatalysis was proposed based on the fact that the predominant species of CO2 in aqueous phase were dissolved CO2 and HCO3- at pH ~5.9. It was evident that the CuFe2O4 could harvest the electrons under visible light irradiation, which could further be injected to the conduction band of TiO2 to increase the life time of the electron and facilitating the reactions of CO2 to methanol. The developed catalyst showed good recycle ability up to four cycles where the loss of activity was ~25%. Methanol was observed as the main product over CuFe2O4, but loading with TiO2 remarkably increased the methanol yield. Methanol yield over CuFe2O4/TiO2 was found to be about three times higher (651 μmol/gcat L) than that of CuFe2O4 photocatalyst. This occurs because the energy of the band excited electrons lies above the redox potentials of the reaction products CO2/CH3OH.

Keywords: Photocatalysis, CuFe2O4/TiO2, band-gap energy, methanol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138