Search results for: sequence database
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1187

Search results for: sequence database

467 Waste to Biofuel by Torrefaction Technology

Authors: Jyh-Cherng Chen, Yu-Zen Lin, Wei-Zhi Chen

Abstract:

Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impuritiesand increase the energy density of biowaste effectively.To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric valueof torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal.

Keywords: Torrefaction, waste to energy, calorie, biofuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
466 Matching Current Search with Future Postings

Authors: Kim Nee Goh, Viknesh Kumar Naleyah

Abstract:

Online trading is an alternative to conventional shopping method. People trade goods which are new or pre-owned before. However, there are times when a user is not able to search the items wanted online. This is because the items may not be posted as yet, thus ending the search. Conventional search mechanism only works by searching and matching search criteria (requirement) with data available in a particular database. This research aims to match current search requirements with future postings. This would involve the time factor in the conventional search method. A Car Matching Alert System (CMAS) prototype was developed to test the matching algorithm. When a buyer-s search returns no result, the system saves the search and the buyer will be alerted if there is a match found based on future postings. The algorithm developed is useful and as it can be applied in other search context.

Keywords: Matching algorithm, online trading, search, future postings, car matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
465 Three-phases Model of the Induction Machine Taking Account the Stator Faults

Authors: Djalal Eddine Khodja, Aissa Kheldoun

Abstract:

In this work we present the modelling of the induction machine, taking into consideration the stator defects of the induction machine. It is based on the theory of electromagnetic coupling of electrical circuits. In fact, for the modelling of stationary defects such as short circuit between turns in the same phase, we introduce only in the matrix the coefficients of resistance and inductance of stator and in the mutual inductance stator-rotor. These coefficients take account the number of turns in short-circuit deducted from the total number of turns in the same phase; in this way we obtain the number of useful turns. In addition, all these faults involved, will be used for the creation of the database that will be used to develop an automated system failures of the induction machine.

Keywords: Asynchronous machine, Indicatory Values Statorfaults, Multi-turns Model, Three-phases Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
464 Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences

Authors: Chien-Hua Wang, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.

Keywords: Association Rule, Fuzzy Partition Methods, FWFP-Growth, Apiroir algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
463 Analytical and Statistical Study of the Parameters of Expansive Soil

Authors: A. Medjnoun, R. Bahar

Abstract:

The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.

Keywords: Analysis, estimated model, parameter identification, Swelling of clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
462 Shift Invariant Support Vector Machines Face Recognition System

Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas

Abstract:

In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.

Keywords: Face recognition, support vector machines, shiftinvariance, image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
461 Molecular Characterization of Free Radicals Decomposing Genes on Plant Developmental Stages

Authors: R. Haddad, K. Morris, V. Buchanan-Wollaston

Abstract:

Biochemical and molecular analysis of some antioxidant enzyme genes revealed different level of gene expression on oilseed (Brassica napus). For molecular and biochemical analysis, leaf tissues were harvested from plants at eight different developmental stages, from young to senescence. The levels of total protein and chlorophyll were increased during maturity stages of plant, while these were decreased during the last stages of plant growth. Structural analysis (nucleotide and deduced amino acid sequence, and phylogenic tree) of a complementary DNA revealed a high level of similarity for a family of Catalase genes. The expression of the gene encoded by different Catalase isoforms was assessed during different plant growth phase. No significant difference between samples was observed, when Catalase activity was statistically analyzed at different developmental stages. EST analysis exhibited different transcripts levels for a number of other relevant antioxidant genes (different isoforms of SOD and glutathione). The high level of transcription of these genes at senescence stages was indicated that these genes are senescenceinduced genes.

Keywords: Biochemical analysis, Oilseed, Expression pattern, Growth phases

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
460 Modernization of the Economic Price Adjustment Software

Authors: Roger L Goodwin

Abstract:

The US Consumer Price Indices (CPIs) measures hundreds of items in the US economy. Many social programs and government benefits index to the CPIs. The purpose of this project is to modernize an existing process. This paper will show the development of a small, visual, software product that documents the Economic Price Adjustment (EPA) for longterm contracts. The existing workbook does not provide the flexibility to calculate EPAs where the base-month and the option-month are different. Nor does the workbook provide automated error checking. The small, visual, software product provides the additional flexibility and error checking. This paper presents the feedback to project.

Keywords: Consumer Price Index, Economic Price Adjustment, contracts, visualization tools, database, reports, forms, event procedures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
459 Deterministic Random Number Generator Algorithm for Cryptosystem Keys

Authors: Adi A. Maaita, Hamza A. A. Al_Sewadi

Abstract:

One of the crucial parameters of digital cryptographic systems is the selection of the keys used and their distribution. The randomness of the keys has a strong impact on the system’s security strength being difficult to be predicted, guessed, reproduced, or discovered by a cryptanalyst. Therefore, adequate key randomness generation is still sought for the benefit of stronger cryptosystems. This paper suggests an algorithm designed to generate and test pseudo random number sequences intended for cryptographic applications. This algorithm is based on mathematically manipulating a publically agreed upon information between sender and receiver over a public channel. This information is used as a seed for performing some mathematical functions in order to generate a sequence of pseudorandom numbers that will be used for encryption/decryption purposes. This manipulation involves permutations and substitutions that fulfill Shannon’s principle of “confusion and diffusion”. ASCII code characters were utilized in the generation process instead of using bit strings initially, which adds more flexibility in testing different seed values. Finally, the obtained results would indicate sound difficulty of guessing keys by attackers.

Keywords: Cryptosystems, Information Security agreement, Key distribution, Random numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3431
458 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: Extreme learning, LIRA neural classifier, speaker identification, voice recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
457 Integration and Selectivity in Open Innovation:An Empirical Analysis in SMEs

Authors: Chiara Verbano, Maria Crema, Karen Venturini

Abstract:

The company-s ability to draw on a range of external sources to meet their needs for innovation, has been termed 'open innovation' (OI). Very few empirical analyses have been conducted on Small and Medium Enterprises (SMEs) to the extent that they describe and understand the characteristics and implications of this new paradigm. The study's objective is to identify and characterize different modes of OI, (considering innovation process phases and the variety and breadth of the collaboration), determinants, barriers and motivations in SMEs. Therefore a survey was carried out among Italian manufacturing firms and a database of 105 companies was obtained. With regard to data elaboration, a factorial and cluster analysis has been conducted and three different OI modes have emerged: selective low open, unselective open upstream, and mid- partners integrated open. The different behaviours of the three clusters in terms of determinants factors, performance, firm-s technology intensity, barriers and motivations have been analyzed and discussed.

Keywords: Open innovation, R&D management, SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
456 Non-negative Principal Component Analysis for Face Recognition

Authors: Zhang Yan, Yu Bin

Abstract:

Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.

Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
455 Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

Authors: S. Souli, Z. Lachiri

Abstract:

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram.

To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Keywords: Environmental sounds, Log-Gabor filters, Spectrogram, SVM Multiclass, Visual features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
454 Packet Losses Interpretation in Mobile Internet

Authors: Hossam el-ddin Mostafa, Pavel Čičak

Abstract:

The mobile users with Laptops need to have an efficient access to i.e. their home personal data or to the Internet from any place in the world, regardless of their location or point of attachment, especially while roaming outside the home subnet. An efficient interpretation of packet losses problem that is encountered from this roaming is to the centric of all aspects in this work, to be over-highlighted. The main previous works, such as BER-systems, Amigos, and ns-2 implementation that are considered to be in conjunction with that problem under study are reviewed and discussed. Their drawbacks and limitations, of stopping only at monitoring, and not to provide an actual solution for eliminating or even restricting these losses, are mentioned. Besides that, the framework around which we built a Triple-R sequence as a costeffective solution to eliminate the packet losses and bridge the gap between subnets, an area that until now has been largely neglected, is presented. The results show that, in addition to the high bit error rate of wireless mobile networks, mainly the low efficiency of mobile-IP registration procedure is a direct cause of these packet losses. Furthermore, the output of packet losses interpretation resulted an illustrated triangle of the registration process. This triangle should be further researched and analyzed in our future work.

Keywords: Amigos, BER-systems, ns-2 implementation, packetlosses, registration process, roaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
453 Migration of the Relational Data Base (RDB) to the Object Relational Data Base (ORDB)

Authors: Alae El Alami, Mohamed Bahaj

Abstract:

This paper proposes an approach for translating an existing relational database (RDB) schema into ORDB. The transition is done with methods that can extract various functions from a RDB which is based on aggregations, associations between the various tables, and the reflexive relationships. These methods can extract even the inheritance knowing that no process of reverse engineering can know that it is an Inheritance; therefore, our approach exceeded all of the previous studies made for ​​the transition from RDB to ORDB. In summation, the creation of the New Data Model (NDM) that stocks the RDB in a form of a structured table, and from the NDM we create our navigational model in order to simplify the implementation object from which we develop our different types. Through these types we precede to the last step, the creation of tables.

The step mentioned above does not require any human interference. All this is done automatically, and a prototype has already been created which proves the effectiveness of this approach.

Keywords: Relational databases, Object-relational databases, Semantic enrichment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
452 An Intelligent Approach of Rough Set in Knowledge Discovery Databases

Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das

Abstract:

Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.

Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
451 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
450 Pervasive Computing in Healthcare Systems

Authors: Elham Rastegari, Amirmasood Rahmani, Saeed Setayeshi

Abstract:

The hospital and the health-care center of a community, as a place for people-s life-care and health-care settings, must provide more and better services for patients or residents. After Establishing Electronic Medical Record (EMR) system -which is a necessity- in the hospital, providing pervasive services is a further step. Our objective in this paper is to use pervasive computing in a case study of healthcare, based on EMR database that coordinates application services over network to form a service environment for medical and health-care. Our method also categorizes the hospital spaces into 3 spaces: Public spaces, Private spaces and Isolated spaces. Although, there are many projects about using pervasive computing in healthcare, but all of them concentrate on the disease recognition, designing smart cloths, or provide services only for patient. The proposed method is implemented in a hospital. The obtained results show that it is suitable for our purpose.

Keywords: Pervasive computing, RFID, Health-care.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008
449 The Implementation of Remote Automation Execution Agent over ACL on QOS POLICY Based System

Authors: Hazly Amir, Roime Puniran

Abstract:

This paper will present the implementation of QoS policy based system by utilizing rules on Access Control List (ACL) over Layer 3 (L3) switch. Also presented is the architecture on that implementation; the tools being used and the result were gathered. The system architecture has an ability to control ACL rules which are installed inside an external L3 switch. ACL rules used to instruct the way of access control being executed, in order to entertain all traffics through that particular switch. The main advantage of using this approach is that the single point of failure could be prevented when there are any changes on ACL rules inside L3 switches. Another advantage is that the agent could instruct ACL rules automatically straight away based on the changes occur on policy database without configuring them one by one. Other than that, when QoS policy based system was implemented in distributed environment, the monitoring process can be synchronized easily due to the automate process running by agent over external policy devices.

Keywords: QOS, ACL, L3 Switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
448 The Study of Biodiversity of Thirty Two Families of Useful Plants Existed in Georgia

Authors: Kacharava Tamar, Korakhashvili Avtandil, Epitashvili Tinatin

Abstract:

The article deals with the database, which was created by the authors, related to biodiversity of some families of useful plants (medicinal, aromatic, spices, dye and poisonous) existing in Georgia considering important taxonomy. Our country is also rich with endemic genera. The results of monitoring of the phytogenetic resources to reveal perspective species and situation of endemic species and resources are also discussed in this paper. To get some new medicinal and preventive treatments using plant raw material in the phytomedicine, phytocosmetics and phytoculinary, the unique phytogenetic resources should be protected because the application of useful plants is becoming irreversible. This can be observed along with intensification and sustainable use of ethnobotanical traditions and promotion of phytoproduction based on the international requirements on biodiversity (Convention on Biological Diversity - CBD). Though Georgian phytopharmacy has the centuries-old traditions, today it is becoming the main concern.

Keywords: Aromatic, medicinal, poisonous, spicy, dye plants, endemic biodiversity, endemic, ELISA, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
447 Application of l1-Norm Minimization Technique to Image Retrieval

Authors: C. S. Sastry, Saurabh Jain, Ashish Mishra

Abstract:

Image retrieval is a topic where scientific interest is currently high. The important steps associated with image retrieval system are the extraction of discriminative features and a feasible similarity metric for retrieving the database images that are similar in content with the search image. Gabor filtering is a widely adopted technique for feature extraction from the texture images. The recently proposed sparsity promoting l1-norm minimization technique finds the sparsest solution of an under-determined system of linear equations. In the present paper, the l1-norm minimization technique as a similarity metric is used in image retrieval. It is demonstrated through simulation results that the l1-norm minimization technique provides a promising alternative to existing similarity metrics. In particular, the cases where the l1-norm minimization technique works better than the Euclidean distance metric are singled out.

Keywords: l1-norm minimization, content based retrieval, modified Gabor function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3432
446 Software Reliability Prediction Model Analysis

Authors: L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: Exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
445 Analysis of Failure Pressures of Composite Cylinders with a Polymer Liner of Type IV CNG Vessels

Authors: A. Hocine, A. Ghouaoula, F. Kara Achira, S.M. Medjdoub

Abstract:

The present study deals with the analysis of the cylindrical part of a CNG storage vessel, combining a plastic liner and an over wrapped filament wound composite. Three kind of polymer are used in the present analysis: High density Polyethylene HDPE, Light low density Polyethylene LLDPE and finally blend of LLDPE/HDPE. The effect of the mechanical properties on the behavior of type IV vessel may be then investigated. In the present paper, the effect of the order of the circumferential winding on the stacking sequence may be then investigated. Based on mechanical considerations, the present model provides an exact solution for stresses and deformations on the cylindrical section of the vessel under thermo-mechanical static loading. The result show a good behavior of HDPE liner compared to the other plastic materials. The presence of circumferential winding angle in the stacking improves the rigidity of vessel by improving the burst pressure.

Keywords: CNG, Cylindrical vessel, Filament winding, Liner, Polymer, LLDPE, HDPE, Burst pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3784
444 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
443 Parallel Text Processing: Alignment of Indonesian to Javanese Language

Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy

Abstract:

Parallel text alignment is proposed as a way of aligning bahasa Indonesia to words in Javanese. Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).

Keywords: Parallel text alignment, phrase pair combination, edit distance coefficient, Javanese-Indonesian language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
442 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
441 Support Vector Machine Approach for Classification of Cancerous Prostate Regions

Authors: Metehan Makinacı

Abstract:

The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.

Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
440 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
439 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: Residual stress, X750 superalloy, finite element, welding, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175
438 Criticality Assessment of Failures in Multipoint Communication Networks

Authors: Myriam Noureddine, Rachid Noureddine

Abstract:

Following the current economic challenges and competition, all systems, whatever their field, must be efficient and operational during their activity. In this context, it is imperative to anticipate, identify, eliminate and estimate the failures of systems, which may lead to an interruption of their function. This need requires the management of possible risks, through an assessment of the failures criticality following a dependability approach. On the other hand, at the time of new information technologies and considering the networks field evolution, the data transmission has evolved towards a multipoint communication, which can simultaneously transmit information from a sender to multiple receivers. This article proposes the failures criticality assessment of a multipoint communication network, integrates a database of network failures and their quantifications. The proposed approach is validated on a case study and the final result allows having the criticality matrix associated with failures on the considered network, giving the identification of acceptable risks.

Keywords: Dependability, failure, multipoint network, criticality matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603