Search results for: network security
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3497

Search results for: network security

2777 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs

Authors: Surinder Deswal, Mahesh Pal

Abstract:

An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.

Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
2776 A Performance Evaluation of Cellular Network Suitability for VANET

Authors: Ho-Yeon Kim, Dong-Min Kang, Jun-Ho Lee, Tai-Myoung Chung

Abstract:

Recently, a vehicular ad-hoc networks(VANETs) for Intelligent Transport System(ITS) have become able safety and convenience services surpassing the simple services such as an electronic toll collection system. To provide the proper services, VANET needs infrastructure over the country infrastructure. Thus, we have to spend a huge sum of human resources. In this reason, several studies have been made on the usage of cellular networks instead of new protocols this study is to assess a performance evaluation of the cellular network for VANET. In this paper, the result of a for the suitability of cellular networks for VANET experiment, The LTE(Long Term Evolution) of cellular networks found to be most suitable among the others cellular networks

Keywords: Vehicle communication, VANET, Cellular network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
2775 A Maximum Parsimony Model to Reconstruct Phylogenetic Network in Honey Bee Evolution

Authors: Usha Chouhan, K. R. Pardasani

Abstract:

Phylogenies ; The evolutionary histories of groups of species are one of the most widely used tools throughout the life sciences, as well as objects of research with in systematic, evolutionary biology. In every phylogenetic analysis reconstruction produces trees. These trees represent the evolutionary histories of many groups of organisms, bacteria due to horizontal gene transfer and plants due to process of hybridization. The process of gene transfer in bacteria and hybridization in plants lead to reticulate networks, therefore, the methods of constructing trees fail in constructing reticulate networks. In this paper a model has been employed to reconstruct phylogenetic network in honey bee. This network represents reticulate evolution in honey bee. The maximum parsimony approach has been used to obtain this reticulate network.

Keywords: Hybridization, HGT, Reticulate networks, Recombination, Species, Parsimony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
2774 Research on Rail Safety Security System

Authors: Cai Guoqiang, Jia Limin, Zhou Liming, Liang yu, Li xi

Abstract:

This paper analysis the integrated use of safety monitoring with the domestic and international latest research on rail safety protection system, and focus on the implementation of an organic whole system, with the monitoring and early warning, risk assessment, predictive control and emergency rescue system. The system framework, contents and system structure of Security system is proposed completely. It-s pointed out that the Security system is a negative feedback system composed of by safety monitoring and warning system, risk assessment and emergency rescue system. Safety monitoring and warning system focus on the monitoring target monitoring, early warning, tracking, integration of decision-making, for objective and subjective risks factors. Risk assessment system analysis the occurrence of a major Security risk mechanism, determines the standard of the future short, medium and long term safety conditions, and give prop for development of safety indicators, accident analysis and safety standards. Emergency rescue system is with the goal of rapid and effective rescue work for accident, to minimize casualties and property losses.

Keywords: rail safety protection, monitoring and early warning, risk assessment, emergency rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
2773 A Distributed Topology Control Algorithm to Conserve Energy in Heterogeneous Wireless Mesh Networks

Authors: F. O. Aron, T. O. Olwal, A. Kurien, M. O. Odhiambo

Abstract:

A considerable amount of energy is consumed during transmission and reception of messages in a wireless mesh network (WMN). Reducing per-node transmission power would greatly increase the network lifetime via power conservation in addition to increasing the network capacity via better spatial bandwidth reuse. In this work, the problem of topology control in a hybrid WMN of heterogeneous wireless devices with varying maximum transmission ranges is considered. A localized distributed topology control algorithm is presented which calculates the optimal transmission power so that (1) network connectivity is maintained (2) node transmission power is reduced to cover only the nearest neighbours (3) networks lifetime is extended. Simulations and analysis of results are carried out in the NS-2 environment to demonstrate the correctness and effectiveness of the proposed algorithm.

Keywords: Topology Control, Wireless Mesh Networks, Backbone, Energy Efficiency, Localized Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
2772 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel

Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan

Abstract:

This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.

Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
2771 Street Network in Bandung City, Indonesia: Comparison between City Center and New Commercial Area

Authors: Siska Soesanti, Norihiro Nakai

Abstract:

Bandung city center can be deemed as economic, social and cultural center. However the city center suffers from deterioration. The retail activities tend to shift outward the city center. Numerous idyllic residences changed into business premises in two villages situated in the north part of the city during 1990s, especially after a new highway and flyover opened. According to space syntax theory, the pattern of spatial integration in the urban grid is a prime determinant of movement patterns in the system. The syntactic analysis results show the flyover has insignificant influence on street network in the city center. However the flyover has been generating a major difference in the new commercial area since it has become relatively as strategic as the city center. Besides street network, local government policy, rapid private motorization and particular condition of each site also played important roles in encouraging the current commercial areas to flourish.

Keywords: City center, commercial area, space syntax, street network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
2770 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients

Authors: Zarita Zainuddin, Ong Pauline, C. Ardil

Abstract:

Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.

Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2967
2769 Traffic Behaviour of VoIP in a Simulated Access Network

Authors: Jishu Das Gupta, Srecko Howard, Angela Howard

Abstract:

Insufficient Quality of Service (QoS) of Voice over Internet Protocol (VoIP) is a growing concern that has lead the need for research and study. In this paper we investigate the performance of VoIP and the impact of resource limitations on the performance of Access Networks. The impact of VoIP performance in Access Networks is particularly important in regions where Internet resources are limited and the cost of improving these resources is prohibitive. It is clear that perceived VoIP performance, as measured by mean opinion score [2] in experiments, where subjects are asked to rate communication quality, is determined by end-to-end delay on the communication path, delay variation, packet loss, echo, the coding algorithm in use and noise. These performance indicators can be measured and the affect in the Access Network can be estimated. This paper investigates the congestion in the Access Network to the overall performance of VoIP services with the presence of other substantial uses of internet and ways in which Access Networks can be designed to improve VoIP performance. Methods for analyzing the impact of the Access Network on VoIP performance will be surveyed and reviewed. This paper also considers some approaches for improving performance of VoIP by carrying out experiments using Network Simulator version 2 (NS2) software with a view to gaining a better understanding of the design of Access Networks.

Keywords: Codec, DiffServ, Droptail, RED, VOIP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
2768 Robust Stabilization against Unknown Consensus Network

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper studies a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. From an existing robust stabilization result, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.

Keywords: Multi-agent System, Robust Stabilization, Transfer Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
2767 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

Authors: M. Zerikat, M. Bendjebbar, N. Benouzza

Abstract:

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
2766 Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier

Authors: I. Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic

Abstract:

In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.

Keywords: Epilepsy, EEG, Wavelet transform, Energydistribution, Neural Network, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
2765 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 375
2764 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
2763 Some Issues with Extension of an HPC Cluster

Authors: Pil Seong Park

Abstract:

Homemade HPC clusters are widely used in many small labs, because they are easy to build and cost-effective. Even though incremental growth is an advantage of clusters, it results in heterogeneous systems anyhow. Instead of adding new nodes to the cluster, we can extend clusters to include some other Internet servers working independently on the same LAN, so that we can make use of their idle times, especially during the night. However extension across a firewall raises some security problems with NFS. In this paper, we propose a method to solve such a problem using SSH tunneling, and suggest a modified structure of the cluster that implements it.

Keywords: Extension of HPC clusters, Security, NFS, SSH tunneling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
2762 Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy

Authors: Hui-Min Ting, Tsair-Fwu Lee, Ming-Yuan Cho, Pei-Ju Chao, Chun-Ming Chang, Long-Chang Chen, Fu-Min Fang

Abstract:

To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.

Keywords: NPC, ANN, logistic regression, xerostomia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
2761 Hand Gesture Recognition: Sign to Voice System (S2V)

Authors: Oi Mean Foong, Tan Jung Low, Satrio Wibowo

Abstract:

Hand gesture is one of the typical methods used in sign language for non-verbal communication. It is most commonly used by people who have hearing or speech problems to communicate among themselves or with normal people. Various sign language systems have been developed by manufacturers around the globe but they are neither flexible nor cost-effective for the end users. This paper presents a system prototype that is able to automatically recognize sign language to help normal people to communicate more effectively with the hearing or speech impaired people. The Sign to Voice system prototype, S2V, was developed using Feed Forward Neural Network for two-sequence signs detection. Different sets of universal hand gestures were captured from video camera and utilized to train the neural network for classification purpose. The experimental results have shown that neural network has achieved satisfactory result for sign-to-voice translation.

Keywords: Hand gesture detection, neural network, signlanguage, sequence detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
2760 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

Authors: A. R. Malekpour, A.R. Seifi

Abstract:

This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
2759 Fuzzy Logic Based Coordinated Voltage Control for Distribution Network with Distributed Generations

Authors: T. Juhana Hashim, A. Mohamed

Abstract:

This paper discusses the implementation of a fuzzy logic based coordinated voltage control for a distribution system connected with distributed generations (DGs). The connection of DGs has created a challenge for the distribution network operators to keep the voltage in the system within its acceptable limits. Intelligent centralized or coordinated voltage control schemes have proven to be more reliable due to its ability to provide more control and coordination with the communication with other network devices. In this work, voltage control using fuzzy logic by coordinating three methods of control, power factor control, on load tap changer and generation curtailment is implemented on a distribution network test system. The results show that the fuzzy logic based coordination is able to keep the voltage within its allowable limits. 

Keywords: Coordinated control, Distributed generation, Fuzzy logic, Voltage control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
2758 Multimode Dynamics of the Beijing Road Traffic System

Authors: Zundong Zhang, Limin Jia, Xiaoliang Sun

Abstract:

The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phases

Keywords: Dynamic Network Models, Structural Randomness, Scale-free Property, Multi-mode character

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
2757 B-VIS Service-oriented Middleware for RFID Sensor Network

Authors: Wiroon Sriborrirux, Sorakrai Kraipui, Nakorn Indra-Payoong

Abstract:

One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.

Keywords: Middleware, RFID sensor network, Cooperativevehicle-infrastructure system, Enterprise Java Bean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
2756 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
2755 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
2754 Impact of HIV/AIDS on Food Security in Pala Sub-Location, Bondo District, Kenya

Authors: S. B. Otieno, Were Fred, E. W. Kabiru, K. Waza

Abstract:

Background: HIV/AIDS is leading to the loss of labor through sickness and subsequent death, this is leading to the neglect of farm and off-farm activities, with the subsequent loss of potential income and food security. The situation is sensitive to seasonal labour peaks in agriculture. This study was done to determine the impact of high HIV prevalence in farming systems and food security in Pala Bondo District, Kenya. Methods: In this study, 386 respondents were randomly chosen in Pala Sub-Location. The respondents and key informants were interviewed using structured questionnaire. The data were entered and analyzed using SPSS version 16. Results: It was established that majority of respondents (67%) were between 18 and 35 years {χ2 = (1, N = 386) = 13.430, p = 0.000} (chimney effect). The study also established that 83.5% of respondents were married {χ2 = (1, N= 370) = 166.277 p = 0.000} and predominant occupation being farming and fishing (61%), while 52.8% of farm labour was by hand, 26% by oxen, and 4.9% mechanized. 73.2% of respondents only farm 0.25 to 2 acres, 48% mentioned lack of labour in land preparation {χ2 ((1,N = 321) = 113.146, p = 0.000), in planting {χ2 (1, N = 321) = 29.28, p = 0.000}. Majority of respondents lack food from January to June, during which 93% buy food. Conclusion: The high HIV prevalence in Pala has affected the farm labour leading to food insecurity.

Keywords: Food security, HIV, AIDS, labour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1121
2753 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: Distillation, machine learning, neural networks, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
2752 An Hybrid Approach for Loss Reduction in Distribution Systems using Harmony Search Algorithm

Authors: R. Srinivasa Rao

Abstract:

Individually Network reconfiguration or Capacitor control perform well in minimizing power loss and improving voltage profile of the distribution system. But for heavy reactive power loads network reconfiguration and for heavy active power loads capacitor placement can not effectively reduce power loss and enhance voltage profiles in the system. In this paper, an hybrid approach that combine network reconfiguration and capacitor placement using Harmony Search Algorithm (HSA) is proposed to minimize power loss reduction and improve voltage profile. The proposed approach is tested on standard IEEE 33 and 16 bus systems. Computational results show that the proposed hybrid approach can minimize losses more efficiently than Network reconfiguration or Capacitor control. The results of proposed method are also compared with results obtained by Simulated Annealing (SA). The proposed method has outperformed in terms of the quality of solution compared to SA.

Keywords: Capacitor Control, Network Reconfiguration, HarmonySearch Algorithm, Loss Reduction, Voltage Profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
2751 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks

Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei

Abstract:

An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.

Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
2750 An Empirical Model of Correlated Traffics in LTE-Advanced System through an Innovative Simulation Tool

Authors: Ghassan A. Abed, Mahamod Ismail, Samir I. Badrawi, Bayan M. Sabbar

Abstract:

Long Term Evolution Advanced (LTE-Advanced) LTE-Advanced is not new as a radio access technology, but it is an evolution of LTE to enhance the performance. This generation is the continuation of 3GPP-LTE (3GPP: 3rd Generation Partnership Project) and it is targeted for advanced development of the requirements of LTE in terms of throughput and coverage. The performance evaluation process of any network should be based on many models and simulations to investigate the network layers and functions and monitor the employment of the new technologies especially when this network includes large-bandwidth and low-latency links such as LTE and LTE-Advanced networks. Therefore, it’s necessary to enhance the proposed models of high-speed and high-congested link networks to make these links and traffics fulfill the needs of the huge data which transferred over the congested links. This article offered an innovative model of the most correlated links of LTE-Advanced system using the Network Simulator 2 (NS-2) with investigation of the link parameters.

Keywords: 3GPP, LTE, LTE-Advanced, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
2749 Spacecraft Neural Network Control System Design using FPGA

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.

Keywords: Spacecraft, neural network, FPGA, VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2993
2748 Application of Computational Intelligence for Sensor Fault Detection and Isolation

Authors: A. Jabbari, R. Jedermann, W. Lang

Abstract:

The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.

Keywords: Fault detection and Isolation, Neural network, Temperature measurement, measurement approximation and classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053