Search results for: list scheduling algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3715

Search results for: list scheduling algorithm

2995 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
2994 Fixture Layout Optimization for Large Metal Sheets Using Genetic Algorithm

Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino

Abstract:

The geometric errors in the manufacturing process can be reduced by optimal positioning of the fixture elements in the fixture to make the workpiece stiff. We propose a new fixture layout optimization method N-3-2-1 for large metal sheets in this paper that combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of the nodal deflection normal to the surface of the workpiece. Two different kinds of case studies are presented, and optimal position of the fixturing element is obtained for different cases.

Keywords: Fixture layout, optimization, fixturing element, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
2993 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis

Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.

Keywords: Big data, social network analysis, text mining, topic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
2992 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
2991 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network

Authors: Mei Shan Ngan, Chee Wei Tan

Abstract:

Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.

Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3757
2990 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, ¬G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486
2989 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
2988 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577
2987 Real-time Detection of Space Manipulator Self-collision

Authors: Zhang Xiaodong, Tang Zixin, Liu Xin

Abstract:

In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder-enveloping surface, and then, a kind of detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.

Keywords: Space manipulator, Collision detection, Self-collision, the real-time collision detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
2986 Optimizing Spatial Trend Detection By Artificial Immune Systems

Authors: M. Derakhshanfar, B. Minaei-Bidgoli

Abstract:

Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.

Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
2985 The Multi-scenario Knapsack Problem: An Adaptive Search Algorithm

Authors: Mhand Hifi, Hedi Mhalla, Mustapha Michaphy

Abstract:

In this paper, we study the multi-scenario knapsack problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of an adaptive algorithm for solving heuristically the problem. The used method combines two complementary phases: a size reduction phase and a dynamic 2- opt procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for reducing the size problem. Second, the adaptive search procedure is applied in order to attain a feasible solution Finally, the performances of two versions of the proposed algorithm are evaluated on a set of randomly generated instances.

Keywords: combinatorial optimization, max-min optimization, knapsack, heuristics, problem reduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
2984 The Rank-scaled Mutation Rate for Genetic Algorithms

Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac

Abstract:

A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

Keywords: Genetic algorithms, mutation rate control, adaptive mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
2983 Off-Line Hand Written Thai Character Recognition using Ant-Miner Algorithm

Authors: P. Phokharatkul, K. Sankhuangaw, S. Somkuarnpanit, S. Phaiboon, C. Kimpan

Abstract:

Much research into handwritten Thai character recognition have been proposed, such as comparing heads of characters, Fuzzy logic and structure trees, etc. This paper presents a system of handwritten Thai character recognition, which is based on the Ant-minor algorithm (data mining based on Ant colony optimization). Zoning is initially used to determine each character. Then three distinct features (also called attributes) of each character in each zone are extracted. The attributes are Head zone, End point, and Feature code. All attributes are used for construct the classification rules by an Ant-miner algorithm in order to classify 112 Thai characters. For this experiment, the Ant-miner algorithm is adapted, with a small change to increase the recognition rate. The result of this experiment is a 97% recognition rate of the training set (11200 characters) and 82.7% recognition rate of unseen data test (22400 characters).

Keywords: Hand written, Thai character recognition, Ant-mineralgorithm, distinct feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
2982 High Capacity Spread-Spectrum Watermarking for Telemedicine Applications

Authors: Basant Kumar, Animesh Anand, S.P. Singh, Anand Mohan

Abstract:

This paper presents a new spread-spectrum watermarking algorithm for digital images in discrete wavelet transform (DWT) domain. The algorithm is applied for embedding watermarks like patient identification /source identification or doctors signature in binary image format into host digital radiological image for potential telemedicine applications. Performance of the algorithm is analysed by varying the gain factor, subband decomposition levels, and size of watermark. Simulation results show that the proposed method achieves higher watermarking capacity.

Keywords: Watermarking, spread-spectrum, discrete wavelettransform, telemedicine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
2981 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
2980 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
2979 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
2978 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
2977 Siding Mode Control of Pitch-Rate of an F-16 Aircraft

Authors: Ekprasit Promtun, Sridhar Seshagiri

Abstract:

This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.

Keywords: Sliding-mode Control, Integral Control, Model Following, F-16 Longitudinal Dynamics, Pitch-Rate Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
2976 Practical Aspects of Face Recognition

Authors: S. Vural, H. Yamauchi

Abstract:

Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.

Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
2975 A Dynamic Filter for Removal DC - Offset In Current and Voltage Waveforms

Authors: Khaled M.EL-Naggar

Abstract:

In power systems, protective relays must filter their inputs to remove undesirable quantities and retain signal quantities of interest. This job must be performed accurate and fast. A new method for filtering the undesirable components such as DC and harmonic components associated with the fundamental system signals. The method is s based on a dynamic filtering algorithm. The filtering algorithm has many advantages over some other classical methods. It can be used as dynamic on-line filter without the need of parameters readjusting as in the case of classic filters. The proposed filter is tested using different signals. Effects of number of samples and sampling window size are discussed. Results obtained are presented and discussed to show the algorithm capabilities.

Keywords: Protection, DC-offset, Dynamic Filter, Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3762
2974 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio D. Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from a real-life pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: Constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
2973 Microwave Imaging by Application of Information Theory Criteria in MUSIC Algorithm

Authors: M. Pourahmadi

Abstract:

The performance of time-reversal MUSIC algorithm will be dramatically degrades in presence of strong noise and multiple scattering (i.e. when scatterers are close to each other). This is due to error in determining the number of scatterers. The present paper provides a new approach to alleviate such a problem using an information theoretic criterion referred as minimum description length (MDL). The merits of the novel approach are confirmed by the numerical examples. The results indicate the time-reversal MUSIC yields accurate estimate of the target locations with considerable noise and multiple scattering in the received signals.

Keywords: Microwave imaging, Time reversal, MUSIC algorithm, Minimum Description Length (MDL).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
2972 A Blind SLM Scheme for Reduction of PAPR in OFDM Systems

Authors: K. Kasiri, M. J. Dehghani

Abstract:

In this paper we propose a blind algorithm for peakto- average power ratio (PAPR) reduction in OFDM systems, based on selected mapping (SLM) algorithm as a distortionless method. The main drawback of the conventional SLM technique is the need for transmission of several side information bits, for each data block, which results in loss in data rate transmission. In the proposed method some special number of carriers in the OFDM frame is reserved to be rotated with one of the possible phases according to the number of phase sequence blocks in SLM algorithm. Reserving some limited number of carriers wont effect the reduction in PAPR of OFDM signal. Simulation results show using ML criteria at the receiver will lead to the same system-performance as the conventional SLM algorithm, while there is no need to send any side information to the receiver.

Keywords: Orthogonal Frequency Division Multiplexing(OFDM), Peak-to-Average Power Ratio (PAPR), Selected Mapping(SLM), Blind SLM (BSLM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
2971 An Algorithm Proposed for FIR Filter Coefficients Representation

Authors: Mohamed Al Mahdi Eshtawie, Masuri Bin Othman

Abstract:

Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.

Keywords: Pulse shaping Filter, Distributed Arithmetic, Optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3177
2970 Genetic Algorithm and Padé-Moment Matching for Model Order Reduction

Authors: Shilpi Lavania, Deepak Nagaria

Abstract:

A mixed method for model order reduction is presented in this paper. The denominator polynomial is derived by matching both Markov parameters and time moments, whereas numerator polynomial derivation and error minimization is done using Genetic Algorithm. The efficiency of the proposed method can be investigated in terms of closeness of the response of reduced order model with respect to that of higher order original model and a comparison of the integral square error as well.

Keywords: Model Order Reduction (MOR), control theory, Markov parameters, time moments, genetic algorithm, Single Input Single Output (SISO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536
2969 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: Metabolic network, gene knockout, flux balance analysis, microarray data, integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
2968 Using Genetic Programming to Evolve a Team of Data Classifiers

Authors: Gregor A. Morrison, Dominic P. Searson, Mark J. Willis

Abstract:

The purpose of this paper is to demonstrate the ability of a genetic programming (GP) algorithm to evolve a team of data classification models. The GP algorithm used in this work is “multigene" in nature, i.e. there are multiple tree structures (genes) that are used to represent team members. Each team member assigns a data sample to one of a fixed set of output classes. A majority vote, determined using the mode (highest occurrence) of classes predicted by the individual genes, is used to determine the final class prediction. The algorithm is tested on a binary classification problem. For the case study investigated, compact classification models are obtained with comparable accuracy to alternative approaches.

Keywords: classification, genetic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
2967 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures

Authors: Silvina Caíno-Lores, Jesús Carretero

Abstract:

Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.

Keywords: Co-scheduling, data-centric, data-intensive, data locality, in-memory storage, large scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
2966 Optimizing Network Latency with Fast Path Assignment for Incoming Flows

Authors: Qing Lyu, Hang Zhu

Abstract:

Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.

Keywords: Latency, Fast path assignment, Bottleneck link.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593