Search results for: knowledge extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2590

Search results for: knowledge extraction

1870 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
1869 An Expert System for Car Failure Diagnosis

Authors: Ahmad T. Al-Taani

Abstract:

Car failure detection is a complicated process and requires high level of expertise. Any attempt of developing an expert system dealing with car failure detection has to overcome various difficulties. This paper describes a proposed knowledge-based system for car failure detection. The paper explains the need for an expert system and the some issues on developing knowledge-based systems, the car failure detection process and the difficulties involved in developing the system. The system structure and its components and their functions are described. The system has about 150 rules for different types of failures and causes. It can detect over 100 types of failures. The system has been tested and gave promising results.

Keywords: Expert system, car failure diagnosis, knowledgebasedsystem, CLIPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11919
1868 Information Resource Management Maturity Model

Authors: Afshari H., Khosravi Sh.

Abstract:

Nowadays there are more than thirty maturity models in different knowledge areas. Maturity model is an area of interest that contributes organizations to find out where they are in a specific knowledge area and how to improve it. As Information Resource Management (IRM) is the concept that information is a major corporate resource and must be managed using the same basic principles used to manage other assets, assessment of the current IRM status and reveal the improvement points can play a critical role in developing an appropriate information structure in organizations. In this paper we proposed a framework for information resource management maturity model (IRM3) that includes ten best practices for the maturity assessment of the organizations' IRM.

Keywords: Information resource management (IRM), information resource management maturity model (IRM3), maturity model, best practice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
1867 Perceptions of Climate Change Risk to Forest Ecosystems: A Case Study of Patale Community Forestry User Group, Nepal

Authors: N. R. P Withana, E. Auch

Abstract:

The purpose of this study was to investigate perceptions of climate change risk to forest ecosystems and forestbased communities as well as perceived effectiveness of adaptation strategies for climate change as well as challenges for adaptation. Data was gathered using a pre-tested semi-structured questionnaire. Simple random selection technique was applied. For the majority of issues, the responses were obtained on multi-point likert scales, and the scores provided were, in turn, used to estimate the means and other useful estimates. A composite knowledge index developed using correct responses to a set of self-rated statements were used to evaluate the issues. The mean of the knowledge index was 0.64. Also all respondents recorded values of the knowledge index above 0.25. Increase forest fire was perceived by respondents as the greatest risk to forest eco-system. Decrease access to water supplies was perceived as the greatest risk to livelihoods of forest based communities. The most effective adaptation strategy relevant to climate change risks to forest eco-systems and forest based communities livelihoods in Kathmandu valley in Nepal as perceived by the respondents was reforestation and afforestation. As well, lack of public awareness was perceived as the major limitation for climate change adaptation. However, perceived risks as well as effective adaptation strategies showed an inconsistent association with knowledge indicators and social-cultural variables. The results provide useful information to any party who involve with climate change issues in Nepal, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.

Keywords: Climate change, forest ecosystems, forest-based communities, risk perceptions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
1866 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: Apparent porosity, beneficiation, low grade chromite, refractory, spinel compounds, slag resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
1865 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
1864 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
1863 Relationship of Arm Acupressure Points and Thai Traditional Massage

Authors: Boonyarat Chaleephay

Abstract:

The purpose of this research paper was to describe the relationship of acupressure points on the anterior surface of the upper limb in accordance with Applied Thai Traditional Massage (ATTM) and the deep structures located at those acupressure points. There were 2 population groups; normal subjects and cadaver specimens. Eighteen males with age ranging from 20-40 years old and seventeen females with ages ranging from 30-97 years old were studies. This study was able to obtain a fundamental knowledge concerning acupressure point and the deep structures that related to those acupressure points. It might be used as the basic knowledge for clinically applying and planning treatment as well as teaching in ATTM.

Keywords: Acupressure point (AP), Applie Thai Traditional Medicine (ATTM), Paresthesia, Numbness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
1862 Development of a Health Literacy Scale for Chinese-Speaking Adults in Taiwan

Authors: Frank C. Pan, Che-Long Su, Ching-Hsuen Chen

Abstract:

Background, measuring an individual-s Health Literacy is gaining attention, yet no appropriate instrument is available in Taiwan. Measurement tools that were developed and used in western countries may not be appropriate for use in Taiwan due to a different language system. Purpose of this research was to develop a Health Literacy measurement instrument specific for Taiwan adults. Methods, several experts of clinic physicians; healthcare administrators and scholars identified 125 common used health related Chinese phrases from major medical knowledge sources that easy accessible to the public. A five-point Likert scale is used to measure the understanding level of the target population. Such measurement is then used to compare with the correctness of their answers to a health knowledge test for validation. Samples, samples under study were purposefully taken from four groups of people in the northern Pingtung, OPD patients, university students, community residents, and casual visitors to the central park. A set of health knowledge index with 10 questions is used to screen those false responses. A sample size of 686 valid cases out of 776 was then included to construct this scale. An independent t-test was used to examine each individual phrase. The phrases with the highest significance are then identified and retained to compose this scale. Result, a Taiwan Health Literacy Scale (THLS) was finalized with 66 health-related phrases under nine divisions. Cronbach-s alpha of each division is at a satisfactory level of 89% and above. Conclusions, factors significantly differentiate the levels of health literacy are education, female gender, age, family members of stroke victims, experience with patient care, and healthcare professionals in the initial application in this study..

Keywords: Health literacy, health knowledge, REALM, THLS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
1861 Combination of Different Classifiers for Cardiac Arrhythmia Recognition

Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari

Abstract:

This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.

Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
1860 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 538
1859 Sensor Network Based Emergency Response and Navigation Support Architecture

Authors: Dilusha Weeraddana, Ashanie Gunathillake, Samiru Gayan

Abstract:

In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment. 

Keywords: Emergency response, Firefighters, Navigation, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
1858 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.

Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
1857 Awareness about HIV-Infection among HIV-Infected Individuals Attending Medical Moscow Center, Russia

Authors: Marina Nosik, Irina Rymanova, Sergei Sevostyanihin, Natalya Sergeeva, Alexander Sobkin

Abstract:

This paper presents results of the survey regarding the awareness about HIV/AIDS among HIV-infected individuals. A questionnaire covering various aspects of HIV-infection was conducted among 110 HIV-infected individuals who attended the G.A. Zaharyan Moscow Tuberculosis Clinic, Department for treatment of TB patients with HIV. The questionnaire included questions about modes of HIV transmission and preventive measures against HIV/AIDS, as well as questions about age, gender, education and employment status. The survey revealed that the respondents in the whole had a good knowledge regarding modes of HIV transmission and preventive measures against HIV/AIDS: about 83,6% male respondents and 85,7% female respondents gave an accurate answers regarding the HIV-infection. However, the overwhelming majority of the study participants, that is, 88,5% men and 98% women, was quite ignorant about the risk of acquiring HIV through saliva and toothbrush of HIV-infected individual. Though that risk is rather insignificant, it is still biologically possible. And this gap in knowledge needs to be filled. As the study showed another point of concern was the fact, that despite the knowledge of HIV transmission risk through unprotected sex about 40% percent of HIVpositive men and 25% of HIV-positive women did not insist on using condoms with their sexual partners. These findings indicate that there are still some aspects about HIV-infection which needed to be clarified and explained through more detailed and specific educational programs.

Keywords: AIDS, HIV transmission risks, HIV misconceptions, risk behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
1856 A Follow–Up Study of Bachelor of Science Graduates in Applied Statistics from Suan Sunandha Rajabhat University during the 1999-2012 Academic Years

Authors: Somruedee Pongsena

Abstract:

The purpose of this study is to follow – up the graduated students of Bachelor of Science in Applied Statistics from Suan Sunandha Rajabhat University (SSRU) during the 1999 – 2012 academic years and to provide the fundamental guideline for developing the current curriculum according to Thai Qualifications Framework for Higher Education (TQF: HEd). The sample was collected from 75 graduates by interview and online questionnaire. The content covered 5 subjects were Ethics and Moral, Knowledge, Cognitive Skills, Interpersonal Skill and Responsibility, Numerical Analysis as well as Communication and Information Technology Skills. Data were analyzed by using statistical methods as percentiles, means, standard deviation, t- tests, and F- tests. The findings showed that samples were mostly female had less than 26 years old. The majority of graduates had income in the range of 10,001-20,000 Baht and experience range were 2-5 years. In addition, overall opinions from receiving knowledge to apply to work were at agree; mean score was 3.97 and standard deviation was 0.40. In terms of, the hypothesis testing’s result indicate gender only had different opinion at a significance level of 0.05.

Keywords: Follow up, Graduates, knowledge, opinion, Work performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1855 Ontology-based Query System for UNITEN Postgraduate Students

Authors: Zaihisma C. Cob, Alicia Y.C. Tang, Sharifah J. Syed Aziz

Abstract:

This paper proposes a new model to support user queries on postgraduate research information at Universiti Tenaga Nasional. The ontology to be developed will contribute towards shareable and reusable domain knowledge that makes knowledge assets intelligently accessible to both people and software. This work adapts a methodology for ontology development based on the framework proposed by Uschold and King. The concepts and relations in this domain are represented in a class diagram using the Protégé software. The ontology will be used to support a menudriven query system for assisting students in searching for information related to postgraduate research at the university.

Keywords: Ontology, Protégé, postgraduate program, query system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1854 Decision Support System “Crop-9-DSS“ for Identified Crops

Authors: Ganesan V.

Abstract:

Application of Expert System in the area of agriculture would take the form of Integrated Crop Management decision aids and would encompass water management, fertilizer management, crop protection systems and identification of implements. In order to remain competitive, the modern farmer often relies on agricultural specialists and advisors to provide information for decision-making. An expert system normally composed of a knowledge base (information, heuristics, etc.), inference engine (analyzes knowledge base), and end user interface (accepting inputs, generating outputs). Software named 'CROP-9-DSS' incorporating all modern features like, graphics, photos, video clippings etc. has been developed. This package will aid as a decision support system for identification of pest and diseases with control measures, fertilizer recommendation system, water management system and identification of farm implements for leading crops of Kerala (India) namely Coconut, Rice, Cashew, Pepper, Banana, four vegetables like Amaranthus, Bhindi, Brinjal and Cucurbits. 'CROP-9-DSS' will act as an expert system to agricultural officers, scientists in the field of agriculture and extension workers for decision-making and help them in suggesting suitable recommendations.

Keywords: Diagnostic, inference engine, knowledge base and user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3061
1853 The Impact of Metacognitive Knowledge and Experience on Top Management Team Diversity and Small to Medium Enterprises Performance

Authors: Jo Rhodes, Peter Lok, Zahra Sadeghinejad

Abstract:

The aim of this study is to determine the impact of metacognition on top management team members and firm performance based on full team integration. A survey of 1500 small to medium enterprises (SMEs) was initiated and 140 firms were obtained in this study (with response rate of 9%). The result showed that different metacognitive abilities of managers [knowledge and experience] could enhance team decision-making and problem solving, resulting in greater firm performance. This is a significant finding for SMEs because these organisations have small teams with owner leadership and entrepreneurial orientation.

Keywords: Metacognition, behavioural integration, top management team, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
1852 Adoption of E-Business by Thai SMEs

Authors: Pisit Chanvarasuth

Abstract:

The use of e-business in small and medium-sized enterprises (SMEs) has been recently received an enormous attention in information systems research by both academic and practitioners. With the adoption of new and efficient technologies to enhance businesses, Thai SMEs should be able to compete worldwide. Unfortunately, most of the owners are not used to new technologies. It is clear that most Thai SMEs prefer to work manually rather than electronically. This paper aims to provide a fundamental conceptual framework for E-business adoption by Thai SMEs. Rooted in Knowledge transfer model, several factors are identified, which drive and enable e-business adoption. By overlooking the benefits associated with implementing new technologies, it is difficult for Thai SMEs to perform well enough to compete globally. The paper also helps Thai SMEs to understand factors related to E-business adoption.

Keywords: E-business, SME, Adoption, Knowledge Transfer, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2964
1851 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
1850 Process Analysis through Length Consistency

Authors: James E. Ponder

Abstract:

The requirement for consistency in physics can sometimes offer a common ground between disciplines such that their fundamental equations share a common parameter set and mathematical method for equation extraction. The parameter set shared by Relativity and Quantum Wave Mechanics enables an analysis which will be seen to be very straightforward, primarily classical in nature using linear algebra concepts, yet deriving a theoretical estimate of the value of the Gravitational Constant along with dependencies never before known.

Keywords: Gravitational Constant, Physical Consistency, Quantum Mechanics, Relativity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
1849 Using Data Fusion for Biometric Verification

Authors: Richard A. Wasniowski

Abstract:

A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.

Keywords: Multimodal, biometric, recognition, fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
1848 Innovation in Business

Authors: Noemy Witt Ferreira, Flávio de São Paulo Filho

Abstract:

Innovation, technology and knowledge are the trilogy of impact to support the challenges arising from uncertainty. Evidence showed an opportunity to ask how to manage in this environment under constant innovation. In an attempt to get a response from the field of Management Sciences, based in the Contingency Theory, a research was conducted, with phenomenological and descriptive approaches, using the Case Study Method and the usual procedures for this task involving a focus group composed of managers and employees working in the pharmaceutical field. The problem situation was raised; the state of the art was interpreted and dissected the facts. In this tasks were involved four establishments. The result indicates that these focused ventures have been managed by its founder empirically and is experimenting agility described in this work. The expectation of this study is to improve concepts for stakeholders on creativity in business.

Keywords: Administration. Innovation. Knowledge, Management Technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
1847 Learning Mandarin Chinese as a Foreign Language in a Bilingual Context: Adult Learners’ Perceptions of the Use of L1 Maltese and L2 English in Mandarin Chinese Lessons in Malta

Authors: Christiana Gauci-Sciberras

Abstract:

The first language (L1) could be used in foreign language teaching and learning as a pedagogical tool to scaffold new knowledge in the target language (TL) upon linguistic knowledge that the learner already has. In a bilingual context, code-switching between the two languages usually occurs in classrooms. One of the reasons for code-switching is because both languages are used for scaffolding new knowledge. This research paper aims to find out why both the L1 (Maltese) and the L2 (English) are used in the classroom of Mandarin Chinese as a foreign language (CFL) in the bilingual context of Malta. This research paper also aims to find out the learners’ perceptions of the use of a bilingual medium of instruction. Two research methods were used to collect qualitative data; semi-structured interviews with adult learners of Mandarin Chinese and lesson observations. These two research methods were used so that the data collected in the interviews would be triangulated with data collected in lesson observations. The L1 (Maltese) is the language of instruction mostly used. The teacher and the learners switch to the L2 (English) or to any other foreign language according to the need at a particular instance during the lesson.

Keywords: Chinese, bilingual, pedagogical purpose of L1 and L2, CFL acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
1846 Business Rules for Data Warehouse

Authors: Rajeev Kaula

Abstract:

Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.

Keywords: Business Rules, Data warehouse, PL/SQL ServerPages, Relational model, Web Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2985
1845 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix-to-Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on Convolutional Neural Networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an Autoencoders-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the Pix-to-Pix GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: Low light image enhancement, deep learning, convolutional neural network, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42
1844 Translator Design to Model Cpp Files

Authors: Er. Satwinder Singh, Dr. K.S. Kahlon, Rakesh Kumar, Er. Gurjeet Singh

Abstract:

The most reliable and accurate description of the actual behavior of a software system is its source code. However, not all questions about the system can be answered directly by resorting to this repository of information. What the reverse engineering methodology aims at is the extraction of abstract, goal-oriented “views" of the system, able to summarize relevant properties of the computation performed by the program. While concentrating on reverse engineering we had modeled the C++ files by designing the translator.

Keywords: Translator, Modeling, UML, DYNO, ISVis, TED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1843 Mining Educational Data to Support Students’ Major Selection

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well. 

Keywords: Data mining technique, the decision support system, knowledge and decision rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3284
1842 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke

Abstract:

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
1841 Performance Appraisal System using Multifactorial Evaluation Model

Authors: C. C. Yee, Y.Y.Chen

Abstract:

Performance appraisal of employee is important in managing the human resource of an organization. With the change towards knowledge-based capitalism, maintaining talented knowledge workers is critical. However, management classification of “outstanding", “poor" and “average" performance may not be an easy decision. Besides that, superior might also tend to judge the work performance of their subordinates informally and arbitrarily especially without the existence of a system of appraisal. In this paper, we propose a performance appraisal system using multifactorial evaluation model in dealing with appraisal grades which are often express vaguely in linguistic terms. The proposed model is for evaluating staff performance based on specific performance appraisal criteria. The project was collaboration with one of the Information and Communication Technology company in Malaysia with reference to its performance appraisal process.

Keywords: Multifactorial Evaluation Model, performance appraisal system, decision support system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4268