Search results for: Topology optimization.
1376 Optimization of Enzymatic Activities in Malting of Oat
Authors: E. Hosseini, M. Kadivar, M. Shahedi
Abstract:
Malting is usually carried out on intact barley seed, while hull is still attached to it. In this study, oat grain with and without hull was subjected to controlled germination to optimize its enzymes activity, in such a way that lipase has the lowest and α- amylase and proteinase the highest activities. Since pH has a great impact on the activity of the enzymes, the pH of germination media was set up to 3 to 8. In dehulled oats, lipase and α-amylase had the lowest and highest activities in pHs 3 and 6, respectively whereas the highest proteinase activity was evidenced at pH 7 and 4 in the oats with and without hull respectively. While measurements indicated that the effect of hull on the enzyme activities particularly in lipase and amylase at each level of the pH are significantly different, the best results were obtained in those samples in which their hull had been removed. However, since the similar lipase activity in germinated dehulled oat were recorded at the pHs 4 and 5, therefore it was concluded that pH 5 in dehulled oat seed may provide the optimum enzyme activity for all the enzymes.Keywords: Enzyme activity, malting, oat, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29271375 Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter
Authors: Roshan Sharma, Bjørn Glemmestad
Abstract:
In gas lifted oil fields, the lift gas should be distributed optimally among the wells which share gas from a common source to maximize total oil production. One of the objectives of the paper is to show that a linear MPC consisting of a control objective and an economic objective can be used both as an optimizer and a controller for gas lifted systems. The MPC is based on linearized model of the oil field developed from first principles modeling. Simulation results show that the total oil production is increased by 3.4%. Difficulties in accurately measuring the bottom hole pressure using sensors in harsh operating conditions can be resolved by using an Unscented Kalman Filter (UKF) for estimation. In oil fields where input disturbance (total supply of gas) is not measured, UKF can also be used for disturbance estimation. Increased total oil production due to optimization leads to increased profit.
Keywords: gas lift, MPC, oil production, optimization, Unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26531374 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13751373 Data-organization Before Learning Multi-Entity Bayesian Networks Structure
Authors: H. Bouhamed, A. Rebai, T. Lecroq, M. Jaoua
Abstract:
The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.
Keywords: Data-organization, data-optimization, automatic knowledge discovery, Multi-Entities Bayesian networks, score merging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16101372 System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data
Authors: A. Starczewska, A. Nawrat, K. Daniec, J. Homa, K. Hołda
Abstract:
Border Gateway Protocol (BGP) is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations.
Keywords: Border Gateway Protocol, BGP, BGP hijacking, cybersecurity, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901371 A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor
Authors: Mehdi Nasri, Hossein Nezamabadi-pour, Malihe Maghfoori
Abstract:
This Paper presents a particle swarm optimization (PSO) method for determining the optimal proportional-integral-derivative (PID) controller parameters, for speed control of a linear brushless DC motor. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. The brushless DC motor is modelled in Simulink and the PSO algorithm is implemented in MATLAB. Comparing with Genetic Algorithm (GA) and Linear quadratic regulator (LQR) method, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of a linear brushless DC motor.
Keywords: Brushless DC motor, Particle swarm optimization, PID Controller, Optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49611370 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems
Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. For example rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.
Keywords: Rubber bumper, data acquisition, finite element analysis, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21471369 Investigation on Feature Extraction and Classification of Medical Images
Authors: P. Gnanasekar, A. Nagappan, S. Sharavanan, O. Saravanan, D. Vinodkumar, T. Elayabharathi, G. Karthik
Abstract:
In this paper we present the deep study about the Bio- Medical Images and tag it with some basic extracting features (e.g. color, pixel value etc). The classification is done by using a nearest neighbor classifier with various distance measures as well as the automatic combination of classifier results. This process selects a subset of relevant features from a group of features of the image. It also helps to acquire better understanding about the image by describing which the important features are. The accuracy can be improved by increasing the number of features selected. Various types of classifications were evolved for the medical images like Support Vector Machine (SVM) which is used for classifying the Bacterial types. Ant Colony Optimization method is used for optimal results. It has high approximation capability and much faster convergence, Texture feature extraction method based on Gabor wavelets etc..Keywords: ACO Ant Colony Optimization, Correlogram, CCM Co-Occurrence Matrix, RTS Rough-Set theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30111368 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand
Authors: Leila Jafari, Viliam Makis
Abstract:
In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.Keywords: Condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8291367 Non-Smooth Economic Dispatch Solution by Using Enhanced Bat-Inspired Optimization Algorithm
Authors: Farhad Namdari, Reza Sedaghati
Abstract:
Economic dispatch (ED) has been considered to be one of the key functions in electric power system operation which can help to build up effective generating management plans. The practical ED problem has non-smooth cost function with nonlinear constraints which make it difficult to be effectively solved. This paper presents a novel heuristic and efficient optimization approach based on the new Bat algorithm (BA) to solve the practical non-smooth economic dispatch problem. The proposed algorithm easily takes care of different constraints. In addition, two newly introduced modifications method is developed to improve the variety of the bat population when increasing the convergence speed simultaneously. The simulation results obtained by the proposed algorithms are compared with the results obtained using other recently develop methods available in the literature.
Keywords: Non-smooth, economic dispatch, bat-inspired, nonlinear practical constraints, modified bat algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20811366 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization
Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif
Abstract:
Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.Keywords: Routing protocols, energy optimization, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9011365 Optimization of Technical and Technological Solutions for the Development of Offshore Hydrocarbon Fields in the Kaliningrad Region
Authors: Pavel Shcherban, Viktoria Ivanova, Alexander Neprokin, Vladislav Golovanov
Abstract:
Currently, LLC «Lukoil-Kaliningradmorneft» is implementing a comprehensive program for the development of offshore fields of the Kaliningrad region. This is largely associated with the depletion of the resource base of land in the region, as well as the positive results of geological investigation surrounding the Baltic Sea area and the data on the volume of hydrocarbon recovery from a single offshore field are working on the Kaliningrad region – D-6 «Kravtsovskoye».The article analyzes the main stages of the LLC «Lukoil-Kaliningradmorneft»’s development program for the development of the hydrocarbon resources of the region's shelf and suggests an optimization algorithm that allows managing a multi-criteria process of development of shelf deposits. The algorithm is formed on the basis of the problem of sequential decision making, which is a section of dynamic programming. Application of the algorithm during the consolidation of the initial data, the elaboration of project documentation, the further exploration and development of offshore fields will allow to optimize the complex of technical and technological solutions and increase the economic efficiency of the field development project implemented by LLC «Lukoil-Kaliningradmorneft».
Keywords: Offshore fields of hydrocarbons of the Baltic Sea, Development of offshore oil and gas fields, Optimization of the field development scheme, Solution of multi-criteria tasks in the oil and gas complex, Quality management of technical and technological processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8541364 Process Optimization Regarding Geometrical Variation and Sensitivity Involving Dental Drill- and Implant-Guided Surgeries
Authors: T. Kero, R. Söderberg, M. Andersson, L. Lindkvist
Abstract:
Within dental-guided surgery, there has been a lack of analytical methods for optimizing the treatment of the rehabilitation concepts regarding geometrical variation. The purpose of this study is to find the source of the greatest geometrical variation contributor and sensitivity contributor with the help of virtual variation simulation of a dental drill- and implant-guided surgery process using a methodical approach. It is believed that lower geometrical variation will lead to better patient security and higher quality of dental drill- and implant-guided surgeries. It was found that the origin of the greatest contributor to the most variation, and hence where the foci should be set, in order to minimize geometrical variation was in the assembly category (surgery). This was also the category that was the most sensitive for geometrical variation.Keywords: Variation Simulation, Process Optimization, Guided Surgeries, Dental Prosthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12841363 Optimization of Air Pollution Control Model for Mining
Authors: Zunaira Asif, Zhi Chen
Abstract:
The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.
Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16051362 Optimization of Flexible Job Shop Scheduling Problem with Sequence Dependent Setup Times Using Genetic Algorithm Approach
Authors: Sanjay Kumar Parjapati, Ajai Jain
Abstract:
This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order.
Keywords: Flexible Job Shop, Genetic Algorithm, Makespan, Sequence Dependent Setup Times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32941361 Multi-Objective Optimization in End Milling of Al-6061 Using Taguchi Based G-PCA
Authors: M. K. Pradhan, Mayank Meena, Shubham Sen, Arvind Singh
Abstract:
In this study, a multi objective optimization for end milling of Al 6061 alloy has been presented to provide better surface quality and higher Material Removal Rate (MRR). The input parameters considered for the analysis are spindle speed, depth of cut and feed. The experiments were planned as per Taguchis design of experiment, with L27 orthogonal array. The Grey Relational Analysis (GRA) has been used for transforming multiple quality responses into a single response and the weights of the each performance characteristics are determined by employing the Principal Component Analysis (PCA), so that their relative importance can be properly and objectively described. The results reveal that Taguchi based G-PCA can effectively acquire the optimal combination of cutting parameters.Keywords: Material Removal Rate, Surface Roughness, Taguchi Method, Grey Relational Analysis, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22261360 Stability Optimization of Functionally Graded Pipes Conveying Fluid
Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed
Abstract:
This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22071359 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo
Abstract:
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631358 A New Method for Identifying Broken Rotor Bars in Squirrel Cage Induction Motor Based on Particle Swarm Optimization Method
Authors: V. Rashtchi, R. Aghmasheh
Abstract:
Detection of squirrel cage induction motor (SCIM) broken bars has long been an important but difficult job in the detection area of motor faults. Early detection of this abnormality in the motor would help to avoid costly breakdowns. A new detection method based on particle swarm optimization (PSO) is presented in this paper. Stator current in an induction motor will be measured and characteristic frequency components of faylted rotor will be detected by minimizing a fitness function using pso. Supply frequency and side band frequencies and their amplitudes can be estimated by the proposed method. The proposed method is applied to a faulty motor with one and two broken bars in different loading condition. Experimental results prove that the proposed method is effective and applicable.
Keywords: broken bar, PSO, fault detection, SCIM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161357 Statistical Optimization of the Enzymatic Saccharification of the Oil Palm Empty Fruit Bunches
Authors: Rashid S. S., Alam M. Z.
Abstract:
A statistical optimization of the saccharification process of EFB was studied. The statistical analysis was done by applying faced centered central composite design (FCCCD) under response surface methodology (RSM). In this investigation, EFB dose, enzyme dose and saccharification period was examined, and the maximum 53.45% (w/w) yield of reducing sugar was found with 4% (w/v) of EFB, 10% (v/v) of enzyme after 120 hours of incubation. It can be calculated that the conversion rate of cellulose content of the substrate is more than 75% (w/w) which can be considered as a remarkable achievement. All the variables, linear, quadratic and interaction coefficient, were found to be highly significant, other than two coefficients, one quadratic and another interaction coefficient. The coefficient of determination (R2) is 0.9898 that confirms a satisfactory data and indicated that approximately 98.98% of the variability in the dependent variable, saccharification of EFB, could be explained by this model.Keywords: Face centered central composite design (FCCCD), Liquid state bioconversion (LSB), Palm oil mill effluent, Trichoderma reesei RUT C-30.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22501356 Performance Comparison for AODV, DSR and DSDV W.R.T. CBR and TCP in Large Networks
Authors: Ibrahim M. Buamod, Muattaz Elaneizi
Abstract:
Mobile Ad hoc Network (MANET) is a wireless ad hoc self-configuring network of mobile routers (and associated hosts) connected by wireless links, the union of which forms an arbitrary topology, cause of the random mobility of the nodes. In this paper, an attempt has been made to compare these three protocols DSDV, AODV and DSR on the performance basis under different traffic protocols namely CBR and TCP in a large network. The simulation tool is NS2, the scenarios are made to see the effect of pause times. The results presented in this paper clearly indicate that the different protocols behave differently under different pause times. Also, the results show the main characteristics of different traffic protocols operating on MANETs and thus select the best protocol on each scenario.
Keywords: Awk, CBR, Random waypoint model, TCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17121355 EML-Estimation of Multivariate t Copulas with Heuristic Optimization
Authors: Jin Zhang, Wing Lon Ng
Abstract:
In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591354 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.
Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13071353 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding
Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi
Abstract:
A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631352 Optimization of CO2 Emissions and Cost for Composite Building Design with NSGA-II
Authors: Ji Hyeong Park, Ji Hye Jeon, Hyo Seon Park
Abstract:
Environmental pollution problems have been globally main concern in all fields including economy, society and culture into the 21st century. Beginning with the Kyoto Protocol, the reduction on the emissions of greenhouse gas such as CO2 and SOX has been a principal challenge of our day. As most buildings unlike durable goods in other industries have a characteristic and long life cycle, they consume energy in quantity and emit much CO2. Thus, for green building construction, more research is needed to reduce the CO2 emissions at each stage in the life cycle. However, recent studies are focused on the use and maintenance phase. Also, there is a lack of research on the initial design stage, especially the structure design. Therefore, in this study, we propose an optimal design plan considering CO2 emissions and cost in composite buildings simultaneously by applying to the structural design of actual building.Keywords: Multi-objective optimization, CO2 emissions, structural cost, encased composite structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21621351 Strength Optimization of Induction Hardened Splined Shaft – Material and Geometric Aspects
Authors: I. Barsoum, F. Khan
Abstract:
the current study presents a modeling framework to determine the torsion strength of an induction hardened splined shaft by considering geometry and material aspects with the aim to optimize the static torsion strength by selection of spline geometry and hardness depth. Six different spline geometries and seven different hardness profiles including non-hardened and throughhardened shafts have been considered. The results reveal that the torque that causes initial yielding of the induction hardened splined shaft is strongly dependent on the hardness depth and the geometry of the spline teeth. Guidelines for selection of the appropriate hardness depth and spline geometry are given such that an optimum static torsion strength of the component can be achieved.
Keywords: Static strength, splined shaft, torsion, induction hardening, hardness profile, finite element, optimization, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49691350 An Optimal Feature Subset Selection for Leaf Analysis
Authors: N. Valliammal, S.N. Geethalakshmi
Abstract:
This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22401349 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme
Authors: Yoichi Hikino, Mutsuto Kawahara
Abstract:
The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14631348 An Efficient Approach for Optimal Placement of TCSC in Double Auction Power Market
Authors: Prashant Kumar Tiwari, Yog Raj Sood
Abstract:
This paper proposes an investment cost recovery based efficient and fast sequential optimization approach to optimal allocation of thyristor controlled series compensator (TCSC) in competitive power market. The optimization technique has been used with an objective to maximizing the social welfare and minimizing the device installation cost by suitable location and rating of TCSC in the system. The effectiveness of proposed approach for location of TCSC has been compared with some existing methods of TCSC placement, in terms of its impact on social welfare, TCSC investment recovery and optimal generation as well as load patterns. The results have been obtained on modified IEEE 14-bus system.Keywords: Double auction market, Investment cost recovery, Optimal location, Social welfare, TCSC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22521347 A Case Study on Optimization of Contractor’s Financing through Allocation of Subcontractors
Authors: Helen S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
In many countries, the construction industry relies heavily on outsourcing models in executing their projects and expanding their businesses to fit in the diverse market. Such extensive integration of subcontractors is becoming an influential factor in contractor’s cash flow management. Accordingly, subcontractors’ financial terms are important phenomena and pivotal components for the well-being of the contractor’s cash flow. The aim of this research is to study the contractor’s cash flow with respect to the owner and subcontractor’s payment management plans, considering variable advance payment, payment frequency, and lag and retention policies. The model is developed to provide contractors with a decision support tool that can assist in selecting the optimum subcontracting plan to minimize the contractor’s financing limits and optimize the profit values. The model is built using Microsoft Excel VBA coding, and the genetic algorithm is utilized as the optimization tool. Three objective functions are investigated, which are minimizing the highest negative overdraft value, minimizing the net present worth of overdraft, and maximizing the project net profit. The model is validated on a full-scale project which includes both self-performed and subcontracted work packages. The results show potential outputs in optimizing the contractor’s negative cash flow values and, in the meantime, assisting contractors in selecting suitable subcontractors to achieve the objective function.
Keywords: Cash flow optimization, payment plan, procurement management, subcontracting plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204