Search results for: End-points Detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1524

Search results for: End-points Detection

834 A New Approach for Prioritization of Failure Modes in Design FMEA using ANOVA

Authors: Sellappan Narayanagounder, Karuppusami Gurusami

Abstract:

The traditional Failure Mode and Effects Analysis (FMEA) uses Risk Priority Number (RPN) to evaluate the risk level of a component or process. The RPN index is determined by calculating the product of severity, occurrence and detection indexes. The most critically debated disadvantage of this approach is that various sets of these three indexes may produce an identical value of RPN. This research paper seeks to address the drawbacks in traditional FMEA and to propose a new approach to overcome these shortcomings. The Risk Priority Code (RPC) is used to prioritize failure modes, when two or more failure modes have the same RPN. A new method is proposed to prioritize failure modes, when there is a disagreement in ranking scale for severity, occurrence and detection. An Analysis of Variance (ANOVA) is used to compare means of RPN values. SPSS (Statistical Package for the Social Sciences) statistical analysis package is used to analyze the data. The results presented are based on two case studies. It is found that the proposed new methodology/approach resolves the limitations of traditional FMEA approach.

Keywords: Failure mode and effects analysis, Risk priority code, Critical failure mode, Analysis of variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5438
833 A Structural Support Vector Machine Approach for Biometric Recognition

Authors: Vishal Awasthi, Atul Kumar Agnihotri

Abstract:

Face is a non-intrusive strong biometrics for identification of original and dummy facial by different artificial means. Face recognition is extremely important in the contexts of computer vision, psychology, surveillance, pattern recognition, neural network, content based video processing. The availability of a widespread face database is crucial to test the performance of these face recognition algorithms. The openly available face databases include face images with a wide range of poses, illumination, gestures and face occlusions but there is no dummy face database accessible in public domain. This paper presents a face detection algorithm based on the image segmentation in terms of distance from a fixed point and template matching methods. This proposed work is having the most appropriate number of nodal points resulting in most appropriate outcomes in terms of face recognition and detection. The time taken to identify and extract distinctive facial features is improved in the range of 90 to 110 sec. with the increment of efficiency by 3%.

Keywords: Face recognition, Principal Component Analysis, PCA, Linear Discriminant Analysis, LDA, Improved Support Vector Machine, iSVM, elastic bunch mapping technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
832 Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA

Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Ashraful Alam, Nam Kim, Jae-Hyeung Park

Abstract:

A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.

Keywords: Aw-SpPC, Expressoin Recognition, Face context, Face Detection, PCA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
831 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
830 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
829 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
828 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM

Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad

Abstract:

Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.

Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993
827 Multi-agent On-line Monitor for the Safety of Critical Systems

Authors: Amer A. Dheedan

Abstract:

Operational safety of critical systems, such as nuclear power plants, industrial chemical processes and means of transportation, is a major concern for system engineers and operators. A means to assure that is on-line safety monitors that deliver three safety tasks; fault detection and diagnosis, alarm annunciation and fault controlling. While current monitors deliver these tasks, benefits and limitations in their approaches have at the same time been highlighted. Drawing from those benefits, this paper develops a distributed monitor based on semi-independent agents, i.e. a multiagent system, and monitoring knowledge derived from a safety assessment model of the monitored system. Agents are deployed hierarchically and provided with knowledge portions and collaboration protocols to reason and integrate over the operational conditions of the components of the monitored system. The monitor aims to address limitations arising from the large-scale, complicated behaviour and distributed nature of monitored systems and deliver the aforementioned three monitoring tasks effectively.

Keywords: Alarm annunciation, fault controlling, fault detection and diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
826 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios

Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya

Abstract:

A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.

Keywords: Bistatic radar cross section, passive radar, propagation losses, radar coverage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
825 Topographic Mapping of Farmland by Integration of Multiple Sensors on Board Low-Altitude Unmanned Aerial System

Authors: Mengmeng Du, Noboru Noguchi, Hiroshi Okamoto, Noriko Kobayashi

Abstract:

This paper introduced a topographic mapping system with time-saving and simplicity advantages based on integration of Light Detection and Ranging (LiDAR) data and Post Processing Kinematic Global Positioning System (PPK GPS) data. This topographic mapping system used a low-altitude Unmanned Aerial Vehicle (UAV) as a platform to conduct land survey in a low-cost, efficient, and totally autonomous manner. An experiment in a small-scale sugarcane farmland was conducted in Queensland, Australia. Subsequently, we synchronized LiDAR distance measurements that were corrected by using attitude information from gyroscope with PPK GPS coordinates for generation of precision topographic maps, which could be further utilized for such applications like precise land leveling and drainage management. The results indicated that LiDAR distance measurements and PPK GPS altitude reached good accuracy of less than 0.015 m.

Keywords: Land survey, light detection and ranging, post processing kinematic global positioning system, precision agriculture, topographic map, unmanned aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
824 Detection of Actuator Faults for an Attitude Control System using Neural Network

Authors: S. Montenegro, W. Hu

Abstract:

The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.

Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
823 Toward Indoor and Outdoor Surveillance Using an Improved Fast Background Subtraction Algorithm

Authors: A. El Harraj, N. Raissouni

Abstract:

The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes invariance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.

Keywords: Video surveillance, background subtraction, Contrast Limited Histogram Equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
822 Real-time Target Tracking Using a Pan and Tilt Platform

Authors: Moulay A. Akhloufi

Abstract:

In recent years, we see an increase of interest for efficient tracking systems in surveillance applications. Many of the proposed techniques are designed for static cameras environments. When the camera is moving, tracking moving objects become more difficult and many techniques fail to detect and track the desired targets. The problem becomes more complex when we want to track a specific object in real-time using a moving Pan and Tilt camera system to keep the target within the image. This type of tracking is of high importance in surveillance applications. When a target is detected at a certain zone, the possibility of automatically tracking it continuously and keeping it within the image until action is taken is very important for security personnel working in very sensitive sites. This work presents a real-time tracking system permitting the detection and continuous tracking of targets using a Pan and Tilt camera platform. A novel and efficient approach for dealing with occlusions is presented. Also a new intelligent forget factor is introduced in order to take into account target shape variations and avoid learning non desired objects. Tests conducted in outdoor operational scenarios show the efficiency and robustness of the proposed approach.

Keywords: Tracking, surveillance, target detection, Pan and tilt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
821 Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India

Authors: Varsha Gupta, Priya Datta, Gursimran Mohi, Jagdish Chander

Abstract:

Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.

Keywords: Pefloxacin, salmonella, surrogate marker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
820 Study on Performance of Wigner Ville Distribution for Linear FM and Transient Signal Analysis

Authors: Azeemsha Thacham Poyil, Nasimudeen KM

Abstract:

This research paper presents some methods to assess the performance of Wigner Ville Distribution for Time-Frequency representation of non-stationary signals, in comparison with the other representations like STFT, Spectrogram etc. The simultaneous timefrequency resolution of WVD is one of the important properties which makes it preferable for analysis and detection of linear FM and transient signals. There are two algorithms proposed here to assess the resolution and to compare the performance of signal detection. First method is based on the measurement of area under timefrequency plot; in case of a linear FM signal analysis. A second method is based on the instantaneous power calculation and is used in case of transient, non-stationary signals. The implementation is explained briefly for both methods with suitable diagrams. The accuracy of the measurements is validated to show the better performance of WVD representation in comparison with STFT and Spectrograms.

Keywords: WVD: Wigner Ville Distribution, STFT: Short Time Fourier Transform, FT: Fourier Transform, TFR: Time-Frequency Representation, FM: Frequency Modulation, LFM Signal: Linear FM Signal, JTFA: Joint time frequency analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
819 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case

Authors: Elif Derya UBEYLI, Inan GULER

Abstract:

A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.

Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
818 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
817 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
816 Pattern Recognition Techniques Applied to Biomedical Patterns

Authors: Giovanni Luca Masala

Abstract:

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360
815 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Authors: Gopi Kandaswamy, P. Balamuralidhar

Abstract:

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

Keywords: Fault detection, health monitoring, unmanned aerial vehicles, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
814 CoSP2P: A Component-Based Service Model for Peer-to-Peer Systems

Authors: Candido Alcaide, Manuel Dıaz, Luis Llopis, Antonio Marquez, Bartolome Rubio, Enrique Soler

Abstract:

The increasing complexity of software development based on peer to peer networks makes necessary the creation of new frameworks in order to simplify the developer-s task. Additionally, some applications, e.g. fire detection or security alarms may require real-time constraints and the high level definition of these features eases the application development. In this paper, a service model based on a component model with real-time features is proposed. The high-level model will abstract developers from implementation tasks, such as discovery, communication, security or real-time requirements. The model is oriented to deploy services on small mobile devices, such as sensors, mobile phones and PDAs, where the computation is light-weight. Services can be composed among them by means of the port concept to form complex ad-hoc systems and their implementation is carried out using a component language called UM-RTCOM. In order to apply our proposals a fire detection application is described.

Keywords: Peer-to-peer, mobile systems, real-time, service-oriented architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
813 Design of Parity-Preserving Reversible Logic Signed Array Multipliers

Authors: Mojtaba Valinataj

Abstract:

Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
812 Relative Radiometric Correction of Cloudy Multitemporal Satellite Imagery

Authors: Seema Biday, Udhav Bhosle

Abstract:

Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. This paper demonstrates applicability of an empirical relative radiometric normalization method to a set of multitemporal cloudy images acquired by Resourcesat1 LISS III sensor. Objective of this study is to detect and remove cloud cover and normalize an image radiometrically. Cloud detection is achieved by using Average Brightness Threshold (ABT) algorithm. The detected cloud is removed and replaced with data from another images of the same area. After cloud removal, the proposed normalization method is applied to reduce the radiometric influence caused by non surface factors. This process identifies landscape elements whose reflectance values are nearly constant over time, i.e. the subset of non-changing pixels are identified using frequency based correlation technique. The quality of radiometric normalization is statistically assessed by R2 value and mean square error (MSE) between each pair of analogous band.

Keywords: Correlation, Frequency domain, Multitemporal, Relative Radiometric Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
811 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

Authors: V.Manikandan, N.Devarajan

Abstract:

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
810 Artificial Intelligence Techniques applied to Biomedical Patterns

Authors: Giovanni Luca Masala

Abstract:

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
809 Validating Condition-Based Maintenance Algorithms Through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both Machine Learning and First Principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed from breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems and humans – including asset maintenance operations – in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: Degradation models, ageing, anomaly detection, soft sensor, incremental learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328
808 Evaluation of Newly Developed Dot-ELISA Test for Identification of Naja-naja sumantrana and Calloselasma rhodostoma Venom Antigens

Authors: A.S. Sikarwar, S. Ambu, T .H. Wong

Abstract:

Snake bite cases in Malaysia most often involve the species Naja-naja and Calloselasma rhodostoma. In keeping with the need for a rapid snake venom detection kit in a clinical setting, plate and dot-ELISA test for the venoms of Naja-naja sumatrana, Calloselasma rhodostoma and the cobra venom fraction V antigen was developed. Polyclonal antibodies were raised and further used to prepare the reagents for the dot-ELISA test kit which was tested in mice, rabbit and virtual human models. The newly developed dot- ELISA kit was able to detect a minimum venom concentration of 244ng/ml with cross reactivity of one antibody type. The dot-ELISA system was sensitive and specific for all three snake venom types in all tested animal models. The lowest minimum venom concentration detectable was in the rabbit model, 244ng/ml of the cobra venom fraction V antigen. The highest minimum venom concentration was in mice, 1953ng/ml against a multitude of venoms. The developed dot-ELISA system for the detection of three snake venom types was successful with a sensitivity of 95.8% and specificity of 97.9%.

Keywords: ELISA, Venom, SVDK, Naja-naja sumatrana , Calloselasma rhodostoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
807 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the Internet. Also, unauthorized editing is occurred frequently. Thus, we propose an editing prevention technique for high-quality (HQ) video that can prevent these illegally edited copies from spreading out. The proposed technique is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the embedding signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in unauthorized access prevention method of visual communication or traitor tracking applications which need fast detection process to prevent illegally edited video content from spreading out.

Keywords: Editing prevention technique, gradient method, high-quality video, luminance change, visual communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
806 Design of an Innovative Accelerant Detector

Authors: Esther T. Akinlabi, Milan Isvarial, Stephen A. Akinlabi

Abstract:

Today, canines are still used effectively in acceleration detection situation. However, this method is becoming impractical in modern age and a new automated replacement to the canine is required. This paper reports the design of an innovative accelerant detector. Designing an accelerant detector is a long process as is any design process; therefore, a solution to the need for a mobile, effective accelerant detector is hereby presented. The device is simple and efficient to ensure that any accelerant detection can be conducted quickly and easily. The design utilizes Ultra Violet (UV) light to detect the accelerant. When the UV light shines on an accelerant, the hydrocarbons in the accelerant emit florescence. The advantages of using the UV light to detect accelerant are also outlined in this paper. The mobility of the device is achieved by using a Direct Current (DC) motor to run tank tracks. Tank tracks were chosen as to ensure that the device will be mobile in the rough terrain of a fire site. The materials selected for the various parts are also presented. A Solid Works Simulation was also conducted on the stresses in the shafts and the results are presented. This design is an innovative solution which offers a user friendly interface. The design is also environmentally friendly, ecologically sound and safe to use.

Keywords: Accelerant detector, Canines, Gas Chromatography- Mass Spectrometry (GC-MS), Ultra Violet light.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
805 Effective Defect Prevention Approach in Software Process for Achieving Better Quality Levels

Authors: Suma. V., T. R. Gopalakrishnan Nair

Abstract:

Defect prevention is the most vital but habitually neglected facet of software quality assurance in any project. If functional at all stages of software development, it can condense the time, overheads and wherewithal entailed to engineer a high quality product. The key challenge of an IT industry is to engineer a software product with minimum post deployment defects. This effort is an analysis based on data obtained for five selected projects from leading software companies of varying software production competence. The main aim of this paper is to provide information on various methods and practices supporting defect detection and prevention leading to thriving software generation. The defect prevention technique unearths 99% of defects. Inspection is found to be an essential technique in generating ideal software generation in factories through enhanced methodologies of abetted and unaided inspection schedules. On an average 13 % to 15% of inspection and 25% - 30% of testing out of whole project effort time is required for 99% - 99.75% of defect elimination. A comparison of the end results for the five selected projects between the companies is also brought about throwing light on the possibility of a particular company to position itself with an appropriate complementary ratio of inspection testing.

Keywords: Defect Detection and Prevention, Inspections, Software Engineering, Software Process, Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537