Search results for: statistical machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3913

Search results for: statistical machine learning

3253 A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping

Authors: S.F. Faisal, A.H.M.A. Rahim, J.M. Bakhashwain

Abstract:

Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions. 

Keywords: STATCOM, Robust control, Power system damping, Particle Swarm Optimization, Loop-shaping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
3252 The Effects of the Inference Process in Reading Texts in Arabic

Authors: May George

Abstract:

Inference plays an important role in the learning process and it can lead to a rapid acquisition of a second language. When learning a non-native language i.e., a critical language like Arabic, the students depend on the teacher’s support most of the time to learn new concepts. The students focus on memorizing the new vocabulary and stress on learning all the grammatical rules. Hence, the students became mechanical and cannot produce the language easily. As a result, they are unable to predicate the meaning of words in the context by relying heavily on the teacher, in that they cannot link their prior knowledge or even identify the meaning of the words without the support of the teacher. This study explores how the teacher guides students learning during the inference process and what are the processes of learning that can direct student’s inference.

Keywords: Inference, Reading, Arabic, and Language Acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
3251 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice

Authors: S. Bangphan, P. Bangphan, T. Boonkang

Abstract:

Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.

Keywords: Rice polished cylinder, statistical process control, control charts, process capability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
3250 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: Differential equations, knowledge acquisition, least squares nonlinear, dynamical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
3249 Factors Affecting Happiness Learning of Students of Faculty of Management Science, Suan Sunandha Rajabhat University

Authors: Somtop Keawchuer

Abstract:

The objectives of this research are to compare the satisfaction of students, towards the happiness learning, sorted by their personal profiles, and to figure out the factors that affect the students’ happiness learning. This paper used survey method to collect data from 362 students. The survey was mainly conducted in the Faculty of Management Science, Suan Sunandha Rajabhat University, including 3,443 students. The statistics used for interpreting the results included the frequencies, percentages, standard deviations and One-way ANOVA. The findings revealed that the students are aware and satisfaction that all the factors in 3 categories (knowledge, skill and attitude) influence the happiness learning at the highest levels. The comparison of the satisfaction levels of the students toward their happiness learning leads to the results that the students with different genders, ages, years of study, and majors of the study have the similar satisfaction at the high level.

Keywords: Happiness Learning, Satisfaction, Students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3941
3248 The Para-Universe of Collaborative Group Work in Today-s University Classrooms: Strategies to Help Ensure Success

Authors: Karen Armstrong

Abstract:

Group work, projects and discussions are important components of teacher education courses whether they are face-toface, blended or exclusively online formats. This paper examines the varieties of tasks and challenges with this learning format in a face to face class teacher education class providing specific examples of both failure and success from both the student and instructor perspective. The discussion begins with a brief history of collaborative and cooperative learning, moves to an exploration of the promised benefits and then takes a look at some of the challenges which can arise specifically from the use of new technologies. The discussion concludes with guidelines and specific suggestions.

Keywords: collaborative learning, cooperative computersupported collaborative learning (CSCL), e-learning, group dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
3247 The Effects of a Digital Dialogue Game on Higher Education Students’ Argumentation-Based Learning

Authors: Omid Noroozi

Abstract:

Digital dialogue games have opened up opportunities for learning skills by engaging students in complex problem solving that mimic real world situations, without importing unwanted constraints and risks of the real world. Digital dialogue games can be motivating and engaging to students for fun, creative thinking, and learning. This study explored how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate. A pre-test, post-test design was used with students who were assigned to groups of four and asked to debate a controversial topic with the aim of exploring various 'pros and cons' on the 'Genetically Modified Organisms (GMOs)'. Findings reveal that the Digital dialogue game can facilitate argumentation-based learning. The digital Dialogue game was also evaluated positively in terms of students’ satisfaction and learning experiences.

Keywords: Argumentation, dialogue, digital game, learning, motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
3246 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
3245 Dataset Analysis Using Membership-Deviation Graph

Authors: Itgel Bayarsaikhan, Jimin Lee, Sejong Oh

Abstract:

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Keywords: feature, classification, machine learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
3244 Exploring Self-Directed Learning Among Children

Authors: Mariani Md Nor, Y. Saeednia

Abstract:

Self-directed learning (SDL) was developed initially for adult learning. Guglielmino constructed a scale to measure SDL. Recent researchers have applied this concept to children. Although there are sufficient theoretical evidences to present the possibility of applying this concept to children, empirical evidences were not provided. This study aimed to examine the quality of SDL and construct a scale to measure SDL among young children. A modified scale of Guglielmino-s scale was constructed and piloted with 183 subjects of age 9. Findings suggest that the qualities of SDL in young ages are apparently congruent with that of adults.

Keywords: SDLR, Self-Directed Learning, Young Children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
3243 Meta Model Based EA for Complex Optimization

Authors: Maumita Bhattacharya

Abstract:

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

Keywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
3242 Proposing Problem-Based Learning as an Effective Pedagogical Technique for Social Work Education

Authors: Christine K. Fulmer

Abstract:

Social work education is competency based in nature. There is an expectation that graduates of social work programs throughout the world are to be prepared to practice at a level of competence, which is beneficial to both the well-being of individuals and community. Experiential learning is one way to prepare students for competent practice. The use of Problem-Based Learning (PBL) is a form experiential education that has been successful in a number of disciplines to bridge the gap between the theoretical concepts in the classroom to the real world. PBL aligns with the constructivist theoretical approach to learning, which emphasizes the integration of new knowledge with the beliefs students already hold. In addition, the basic tenants of PBL correspond well with the practice behaviors associated with social work practice including multi-disciplinary collaboration and critical thinking. This paper makes an argument for utilizing PBL in social work education.

Keywords: Constructivist theoretical approach, experiential learning, pedagogy, problem-based learning, social work education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
3241 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
3240 Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems

Authors: Chidentree Treesatayapun

Abstract:

A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.

Keywords: Neuro-Fuzzy, learning algorithm, nonlinear discrete time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
3239 The Recreation Technique Model from the Perspective of Environmental Quality Elements

Authors: G. Gradinaru, S. Olteanu

Abstract:

The quality improvements of the environmental elements could increase the recreational opportunities in a certain area (destination). The technique of the need for recreation focuses on choosing certain destinations for recreational purposes. The basic exchange taken into consideration is the one between the satisfaction gained after staying in that area and the value expressed in money and time allocated. The number of tourists in the respective area, the duration of staying and the money spent including transportation provide information on how individuals rank the place or certain aspects of the area (such as the quality of the environmental elements). For the statistical analysis of the environmental benefits offered by an area through the need of recreation technique, the following stages are suggested: - characterization of the reference area based on the statistical variables considered; - estimation of the environmental benefit through comparing the reference area with other similar areas (having the same environmental characteristics), from the perspective of the statistical variables considered. The model compared in recreation technique faced with a series of difficulties which refers to the reference area and correct transformation of time in money.

Keywords: Comparison in recreation technique, the quality of the environmental elements, statistical analysis model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
3238 Flipped Learning Application on the Development of Capabilities for Civil Engineering Education in Labs

Authors: Hector Barrios-Piña, Georgia García-Arellano, Salvador García-Rodríguez, Gerardo Bocanegra-García, Shashi Kant

Abstract:

This work shows the methodology of application and the effectiveness of the Flipped Learning technique for Civil Engineering laboratory classes. It was experimented by some of the professors of the Department of Civil Engineering at Tecnológico de Monterrey while teaching their laboratory classes. A total of 28 videos were created. The videos primarily demonstrate instructions of the experimental practices other than the usage of tools and materials. The technique allowed the students to prepare for their classes in advance. A survey was conducted on the participating professors and students (semester of August-December 2019) to quantify the effectiveness of the Flipped Learning technique. The students reported it as an excellent way of improving their learning aptitude, including self-learning whereas, the professors felt it as an efficient technique for optimizing their class session, which also provided an extra slot for class-interaction. A comparison of grades was analyzed between the students of the traditional classes and with Flipped Learning. It did not distinguish the benefits of Flipped Learning. However, the positive responses from the students and the professors provide an impetus for continuing and promoting the Flipped Learning technique in future classes.

Keywords: Flipped learning, laboratory classes, educational innovation, civil engineering, higher education, competences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
3237 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor

Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee

Abstract:

Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.

Keywords: Accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
3236 Personalized Learning: An Analysis Using Item Response Theory

Authors: A. Yacob, N. Hj. Ali, M. H. Yusoff, M. Y. MohdSaman, W. M. A. F. W. Hamzah

Abstract:

Personalized learning becomes increasingly popular which not be restricted by time, place or any other barriers. This study proposes an analysis of Personalized Learning using Item Response Theory which considers course material difficulty and learner ability.The study investigates twenty undergraduate students at TATI University College, who are taking programming subject. By using the IRT,it was found that, finding the most appropriate problem levels to each student include high and low level test items together is not a problem. Thus, the student abilities can be asses more accurately and fairly. Learners who experience more anxiety will affect a heavier cognitive load and receive lower test scores.Instructors are encouraged to provide a supportive learning environment to enhance learning effectiveness because Cognitive Load Theory concerns the limited capacity of the brain to absorb new information.

Keywords: Analysis, Cognitive Load Theory, Item Response Theory, Learning, Motivation, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3119
3235 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine

Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin

Abstract:

This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.

Keywords: CAM, multi-axis milling machining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3581
3234 King Bhumibol Adulyadej’s “Learn Wisely” Concept: An Application to Instructional Design

Authors: Rossukhon Makaramani, Supanan Sittilerd

Abstract:

This study is about an application of King Bhumibol Adulyadej’s “Learn Wisely” (LW) concept in instructional design and management process at the Faculty of Education, Suan Sunahdha Rajabhat University. The concept suggests four strategies for true learning. Related literature and significant LW methods in teaching and learning are also reviewed and then applied in designing a pedagogy learning module. The design has been implemented in three classrooms with a total of 115 sophomore student teachers. After one consecutive semester of managing and adjusting the process by instructors and experts using collected data from minutes, assessment of learning management, satisfaction and learning achievement of the students, it is found that the effective SSRU model of LW instructional method comprises of five steps.

Keywords: Instructional Design, Learn Wisely Strategy, Pedagogy Learning Module, Teaching Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
3233 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine

Authors: Karin Kandananond

Abstract:

The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.

Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
3232 Embodied Cognition and Its Implications in Education: An Overview of Recent Literature

Authors: Panagiotis Kosmas, Panayiotis Zaphiris

Abstract:

Embodied Cognition (EC) as a learning paradigm is based on the idea of an inseparable link between body, mind, and environment. In recent years, the advent of theoretical learning approaches around EC theory has resulted in a number of empirical studies exploring the implementation of the theory in education. This systematic literature overview identifies the mainstream of EC research and emphasizes on the implementation of the theory across learning environments. Based on a corpus of 43 manuscripts, published between 2013 and 2017, it sets out to describe the range of topics covered under the umbrella of EC and provides a holistic view of the field. The aim of the present review is to investigate the main issues in EC research related to the various learning contexts. Particularly, the study addresses the research methods and technologies that are utilized, and it also explores the integration of body into the learning context. An important finding from the overview is the potential of the theory in different educational environments and disciplines. However, there is a lack of an explicit pedagogical framework from an educational perspective for a successful implementation in various learning contexts.

Keywords: Embodied cognition, embodied learning, education, technology, schools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
3231 Online Collaborative Learning System Using Speech Technology

Authors: Sid-Ahmed. Selouani, Tang-Ho Lê, Chadia Moghrabi, Benoit Lanteigne, Jean Roy

Abstract:

A Web-based learning tool, the Learn IN Context (LINC) system, designed and being used in some institution-s courses in mixed-mode learning, is presented in this paper. This mode combines face-to-face and distance approaches to education. LINC can achieve both collaborative and competitive learning. In order to provide both learners and tutors with a more natural way to interact with e-learning applications, a conversational interface has been included in LINC. Hence, the components and essential features of LINC+, the voice enhanced version of LINC, are described. We report evaluation experiments of LINC/LINC+ in a real use context of a computer programming course taught at the Université de Moncton (Canada). The findings show that when the learning material is delivered in the form of a collaborative and voice-enabled presentation, the majority of learners seem to be satisfied with this new media, and confirm that it does not negatively affect their cognitive load.

Keywords: E-leaning, Knowledge Network, Speech recognition, Speech synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
3230 Defining Programming Problems as Learning Objects

Authors: José Paulo Leal, Ricardo Queirós

Abstract:

Standards for learning objects focus primarily on content presentation. They were already extended to support automatic evaluation but it is limited to exercises with a predefined set of answers. The existing standards lack the metadata required by specialized evaluators to handle types of exercises with an indefinite set of solutions. To address this issue existing learning object standards were extended to the particular requirements of a specialized domain. A definition of programming problems as learning objects, compatible both with Learning Management Systems and with systems performing automatic evaluation of programs, is presented in this paper. The proposed definition includes metadata that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the evaluation engine; and the roles of different assets - tests cases, program solutions, etc. The EduJudge project and its main services are also presented as a case study on the use of the proposed definition of programming problems as learning objects.

Keywords: Content Packaging, eLearning Services, Interoperability, Learning Objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
3229 Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach

Authors: Jamel Khedri, Mohamed Chaabane, Mansour Souissi, Driss Mehdi

Abstract:

This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.

Keywords: Feedback controller, Takagi-Sugeno fuzzy model, Linear Matrix Inequality (LMI), PMSM, H∞ performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335
3228 Machining Stability of a Milling Machine with Different Preloaded Spindle

Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen

Abstract:

This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the milling machine. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change due to the different preload of spindle bearings. As found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This indicates that the machining stability of a milling machine is affected to vary by the spindle unit when it was assembled with different bearing preload.

Keywords: Dynamic compliance, Bearing preload, Machining stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
3227 Pharmacology Applied Learning Program in Preclinical Years – Student Perspectives

Authors: Amudha Kadirvelu, Sunil Gurtu, Sivalal Sadasivan

Abstract:

Pharmacology curriculum plays an integral role in medical education. Learning pharmacology to choose and prescribe drugs is a major challenge encountered by students. We developed pharmacology applied learning activities for first year medical students that included realistic clinical situations with escalating complications which required the students to analyze the situation and think critically to choose a safe drug. Tutor feedback was provided at the end of session. Evaluation was done to assess the students- level of interest and usefulness of the sessions in rational selection of drugs. Majority (98 %) of the students agreed that the session was an extremely useful learning exercise and agreed that similar sessions would help in rational selection of drugs. Applied learning sessions in the early years of medical program may promote deep learning and bridge the gap between pharmacology theory and clinical practice. Besides, it may also enhance safe prescribing skills.

Keywords: Medical education, pharmacology curriculum, applied learning, safe prescribing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
3226 A Neuroscience-Based Learning Technique: Framework and Application to STEM

Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes

Abstract:

Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.

Keywords: Emotion, emotion-enhanced memory, learning technique, STEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
3225 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
3224 Screening of Process Variables for the Production of Extracellular Lipase from Palm Oil by Trichoderma Viride using Plackett-Burman Design

Authors: R. Rajendiran, S. Gayathri devi, B.T. SureshKumar, V. Arul Priya

Abstract:

Plackett-Burman statistical screening of media constituents and operational conditions for extracellular lipase production from isolate Trichoderma viride has been carried out in submerged fermentation. This statistical design is used in the early stages of experimentation to screen out unimportant factors from a large number of possible factors. This design involves screening of up to 'n-1' variables in just 'n' number of experiments. Regression coefficients and t-values were calculated by subjecting the experimental data to statistical analysis using Minitab version 15. The effects of nine process variables were studied in twelve experimental trials. Maximum lipase activity of 7.83 μmol /ml /min was obtained in the 6th trail. Pareto chart illustrates the order of significance of the variables affecting the lipase production. The present study concludes that the most significant variables affecting lipase production were found to be palm oil, yeast extract, K2HPO4, MgSO4 and CaCl2.

Keywords: lipase, submerged fermentation, statistical optimization, Trichoderma viride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320